Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
BMC Genomics ; 24(1): 684, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37964194

RESUMO

BACKGROUND: Aspergillus fumigatus is a major fungal pathogen that causes severe problems due to its increasing resistance to many therapeutic agents. Fludioxonil is a compound that triggers a lethal activation of the fungal-specific High Osmolarity Glycerol pathway. Its pronounced antifungal activity against A. fumigatus and other pathogenic molds renders this agent an attractive lead substance for the development of new therapeutics. The group III hydride histidine kinase TcsC and its downstream target Skn7 are key elements of the multistep phosphorelay that represents the initial section of the High Osmolarity Glycerol pathway. Loss of tcsC results in resistance to fludioxonil, whereas a Δskn7 mutant is partially, but not completely resistant. RESULTS: In this study, we compared the fludioxonil-induced transcriptional responses in the ΔtcsC and Δskn7 mutant and their parental A. fumigatus strain. The number of differentially expressed genes correlates well with the susceptibility level of the individual strains. The wild type and, to a lesser extend also the Δskn7 mutant, showed a multi-faceted stress response involving genes linked to ribosomal and peroxisomal function, iron homeostasis and oxidative stress. A marked difference between the sensitive wild type and the largely resistant Δskn7 mutant was evident for many cell wall-related genes and in particular those involved in the biosynthesis of chitin. Biochemical data corroborate this differential gene expression that does not occur in response to hyperosmotic stress. CONCLUSIONS: Our data reveal that fludioxonil induces a strong and TcsC-dependent stress that affects many aspects of the cellular machinery. The data also demonstrate a link between Skn7 and the cell wall reorganizations that foster the characteristic ballooning and the subsequent lysis of fludioxonil-treated cells.


Assuntos
Antifúngicos , Aspergillus fumigatus , Dioxóis , Pirróis , Aspergillus fumigatus/genética , Aspergillus fumigatus/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glicerol/metabolismo , Parede Celular/metabolismo
2.
PLoS Pathog ; 19(11): e1011841, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38033163

RESUMO

Macrophages play a key role in disseminated cryptococcosis, a deadly fungal disease caused by Cryptococcus neoformans. This opportunistic infection can arise following the reactivation of a poorly characterized latent infection attributed to dormant C. neoformans. Here, we investigated the mechanisms underlying reactivation of dormant C. neoformans using an in vitro co-culture model of viable but non-culturable (VBNC; equivalent of dormant) yeast cells with bone marrow-derived murine macrophages (BMDMs). Comparative transcriptome analysis of BMDMs incubated with log, stationary phase or VBNC cells of C. neoformans showed that VBNC cells elicited a reduced transcriptional modification of the macrophage but retaining the ability to regulate genes important for immune response, such as NLRP3 inflammasome-related genes. We further confirmed the maintenance of the low immunostimulatory capacity of VBNC cells using multiplex cytokine profiling, and analysis of cell wall composition and dectin-1 ligands exposure. In addition, we evaluated the effects of classic (M1) or alternative (M2) macrophage polarization on VBNC cells. We observed that intracellular residence sustained dormancy, regardless of the polarization state of macrophages and despite indirect detection of pantothenic acid (or its derivatives), a known reactivator for VBNC cells, in the C. neoformans-containing phagolysosome. Notably, M0 and M2, but not M1 macrophages, induced extracellular reactivation of VBNC cells by the secretion of extracellular vesicles and non-lytic exocytosis. Our results indicate that VBNC cells retain the low immunostimulatory profile required for persistence of C. neoformans in the host. We also describe a pro-pathogen role of macrophage-derived extracellular vesicles in C. neoformans infection and reinforce the impact of non-lytic exocytosis and the macrophage profile on the pathophysiology of cryptococcosis.


Assuntos
Criptococose , Cryptococcus neoformans , Vesículas Extracelulares , Animais , Camundongos , Cryptococcus neoformans/genética , Criptococose/microbiologia , Macrófagos , Exocitose
3.
Proc Natl Acad Sci U S A ; 120(6): e2212003120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719915

RESUMO

While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides ß-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Aspergillus fumigatus/metabolismo , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Quitina/metabolismo , Glucanos/metabolismo , Parede Celular/metabolismo
4.
Front Immunol ; 13: 978152, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211424

RESUMO

Invasive aspergillosis (IA) is a life-threatening fungal infection for immunocompromised hosts. It is, therefore, necessary to understand the immune pathways that control this infection. Although the primary infection site is the lungs, aspergillosis can disseminate to other organs through unknown mechanisms. Herein we have examined the in vivo role of various complement pathways as well as the complement receptors C3aR and C5aR1 during experimental systemic infection by Aspergillus fumigatus, the main species responsible for IA. We show that C3 knockout (C3-/-) mice are highly susceptible to systemic infection of A. fumigatus. Intriguingly, C4-/- and factor B (FB)-/- mice showed susceptibility similar to the wild-type mice, suggesting that either the complement pathways display functional redundancy during infection (i.e., one pathway compensates for the loss of the other), or complement is activated non-canonically by A. fumigatus protease. Our in vitro study substantiates the presence of C3 and C5 cleaving proteases in A. fumigatus. Examination of the importance of the terminal complement pathway employing C5-/- and C5aR1-/- mice reveals that it plays a vital role in the conidial clearance. This, in part, is due to the increased conidial uptake by phagocytes. Together, our data suggest that the complement deficiency enhances the susceptibility to systemic infection by A. fumigatus.


Assuntos
Aspergilose , Aspergillus fumigatus , Animais , Complemento C5/genética , Complemento C5/metabolismo , Fator B do Complemento/genética , Pulmão , Camundongos , Esporos Fúngicos
5.
J Colloid Interface Sci ; 614: 322-336, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104706

RESUMO

HYPOTHESIS: Precise modulation of immuno-inflammatory response is crucial to control periodontal diseases and related systemic comorbidities. The present nanosystem with the controlled-release and cell-penetrating manner enhances the inflammation modulation effects of baicalein in human gingival epithelial cells (hGECs) for better oral healthcare. EXPERIMENTS: We constructed a red-emissive mesoporous silica nanoparticle-based nanosystem with cell-penetrating poly(disulfide) (CPD) capping, through a facile in-situ polymerization approach. It was featured with a glutathione-responsive manner and instant cellular internalization capacity for precisely delivering baicalein intracellularly. Laboratory experiments assessed whether and how the nanosystem per se with the delivered baicalein could modulate immuno-inflammatory responses in hGECs. FINDINGS: The in-situ polymerized CPD layer capped the nanoparticles and yet controlled the release of baicalein in a glutathione-responsive manner. The CPD coating could facilitate cellular internalization of the nanosystem via endocytosis and thiol-mediated approaches. Notably, the intracellularly released baicalein effectively downregulated the expression of pro-inflammatory cytokines through inhibiting the NF-κB signaling pathway. The nanosystem per se could modulate immuno-inflammatory responses by passivating the cellular response to interlukin-1ß. This study highlights that the as-synthesized nanosystem may serve as a novel multi-functional vehicle to modulate innate host response via targeting the NF-κB pathway for precision healthcare.


Assuntos
Dissulfetos , Glutationa , Imunomodulação , Nanopartículas , Dióxido de Silício , Dissulfetos/química , Sistemas de Liberação de Medicamentos , Flavanonas/administração & dosagem , Glutationa/química , Humanos , Nanopartículas/química , Nanopartículas/uso terapêutico , Doenças Periodontais/tratamento farmacológico , Polimerização , Porosidade , Dióxido de Silício/química
6.
Cell Surf ; 8: 100072, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35118215

RESUMO

Humoral immunity plays a defensive role against invading microbes. However, it has been largely overlooked with respect to Aspergillus fumigatus, an airborne fungal pathogen. Previously, we have demonstrated that surfactant protein D (SP-D), a major humoral component in human lung-alveoli, recognizes A. fumigatus conidial surface exposed melanin pigment. Through binding to melanin, SP-D opsonizes conidia, facilitates conidial phagocytosis, and induces the expression of protective pro-inflammatory cytokines in the phagocytic cells. In addition to melanin, SP-D also interacts with galactomannan (GM) and galactosaminogalactan (GAG), the cell wall polysaccharides exposed on germinating conidial surfaces. Therefore, we aimed at unravelling the biological significance of SP-D during the germination process. Here, we demonstrate that SP-D exerts direct fungistatic activity by restricting A. fumigatus hyphal growth. Conidial germination in the presence of SP-D significantly increased the exposure of cell wall polysaccharides chitin, α-1,3-glucan and GAG, and decreased ß-1,3-glucan exposure on hyphae, but that of GM was unaltered. Hyphae grown in presence of SP-D showed positive immunolabelling for SP-D. Additionally, SP-D treated hyphae induced lower levels of pro-inflammatory cytokine, but increased IL-10 (anti-inflammatory cytokine) and IL-8 (a chemokine) secretion by human peripheral blood mononuclear cells (PBMCs), compared to control hyphae. Moreover, germ tube surface modifications due to SP-D treatment resulted in an increased hyphal susceptibility to voriconazole, an antifungal drug. It appears that SP-D exerts its anti-A. fumigatus functions via a range of mechanisms including hyphal growth-restriction, hyphal surface modification, masking of hyphal surface polysaccharides and thus altering hyphal immunostimulatory properties.

7.
Front Immunol ; 12: 749074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867977

RESUMO

In this study, the human immune response mechanisms against Sporothrix brasiliensis and Sporothrix schenckii, two causative agents of human and animal sporotrichosis, were investigated. The interaction of S. brasiliensis and S. schenckii with human monocyte-derived macrophages (hMDMs) was shown to be dependent on the thermolabile serum complement protein C3, which facilitated the phagocytosis of Sporothrix yeast cells through opsonization. The peptidorhamnomannan (PRM) component of the cell walls of these two Sporothrix yeasts was found to be one of their surfaces exposed pathogen-associated molecular pattern (PAMP), leading to activation of the complement system and deposition of C3b on the Sporothrix yeast surfaces. PRM also showed direct interaction with CD11b, the specific component of the complement receptor-3 (CR3). Furthermore, the blockade of CR3 specifically impacted the interleukin (IL)-1ß secretion by hMDM in response to both S. brasiliensis and S. schenckii, suggesting that the host complement system plays an essential role in the inflammatory immune response against these Sporothrix species. Nevertheless, the structural differences in the PRMs of the two Sporothrix species, as revealed by NMR, were related to the differences observed in the host complement activation pathways. Together, this work reports a new PAMP of the cell surface of pathogenic fungi playing a role through the activation of complement system and via CR3 receptor mediating an inflammatory response to Sporothrix species.


Assuntos
Antígenos de Fungos/imunologia , Proteínas do Sistema Complemento/imunologia , Glicoproteínas/imunologia , Macrófagos/imunologia , Sporothrix , Parede Celular/imunologia , Ativação do Complemento , Citocinas/imunologia , Humanos , L-Lactato Desidrogenase/imunologia , Antígeno de Macrófago 1/imunologia , Macrófagos/microbiologia , Moléculas com Motivos Associados a Patógenos/imunologia , Fagocitose
8.
mBio ; 12(6): e0282421, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781737

RESUMO

The signaling pathways activated following interaction between dendritic cells (DCs) and a pathogen determine the polarization of effector T-cell and regulatory T-cell (Treg) responses to the infection. Several recent studies, mostly in the context of bacterial infections, have shown that the Wnt/ß-catenin pathway plays a major role in imparting tolerogenic features in DCs and in promotion of Treg responses. However, the significance of the Wnt/ß-catenin pathway's involvement in regulating the immune response to the fungal species is not known. Using Aspergillus fumigatus, a ubiquitous airborne opportunistic fungal species, we show here that fungi activate the Wnt/ß-catenin pathway in human DCs and are critical for mediating the immunosuppressive Treg responses. Pharmacological inhibition of this pathway in DCs led to inhibition of maturation-associated molecules and interleukin 10 (IL-10) secretion without affecting the majority of the inflammatory cytokines. Furthermore, blockade of Wnt signaling in DCs suppressed DC-mediated Treg responses in CD4+ T cells and downregulated both tumor necrosis factor alpha (TNF-α) and IL-10 responses in CD8+ T cells. Mechanistically, induction of ß-catenin pathway by A. fumigatus required C-type lectin receptors and promoted Treg polarization via the induction of programmed death-ligand 1 on DCs. Further investigation on the identity of fungal molecular patterns has revealed that the cell wall polysaccharides ß-(1, 3)-glucan and α-(1, 3)-glucan, but not chitin, possess the capacity to activate the ß-catenin pathway. Our data suggest that the Wnt/ß-catenin pathway is a potential therapeutic target to selectively suppress the Treg response and to sustain the protective Th1 response in the context of invasive aspergillosis caused by A. fumigatus. IMPORTANCE The balance between effector CD4+ T-cell and immunosuppressive regulatory T-cell (Treg) responses determines the outcome of an infectious disease. The signaling pathways that regulate human CD4+ T-effector versus Treg responses to the fungi are not completely understood. By using Aspergillus fumigatus, a ubiquitous opportunistic fungal species, we show that fungi activate the Wnt/ß-catenin pathway in human dendritic cells (DCs) that promotes Treg responses via induction of immune checkpoint molecule programmed death ligand 1 on DCs. Blockade of the Wnt/ß-catenin pathway in DCs led to the selective inhibition of Treg without affecting the Th1 response. Dissection of the identity of A. fumigatus pathogen-associated molecular patterns (PAMPs) revealed that cell wall polysaccharides exhibit selectivity in their capacity to activate the ß-catenin pathway in DCs. Our data thus provide a pointer that Wnt/ß-catenin pathway represents potential therapeutic target to selectively suppress Treg responses and to sustain protective a Th1 response against invasive fungal diseases.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/fisiologia , Antígeno B7-H1/imunologia , Células Dendríticas/imunologia , Linfócitos T Reguladores/imunologia , beta Catenina/imunologia , Aspergilose/genética , Aspergilose/microbiologia , Antígeno B7-H1/genética , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Humanos , Interleucina-10/genética , Interleucina-10/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Via de Sinalização Wnt , beta Catenina/genética
9.
J Extracell Vesicles ; 10(10): e12129, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34377375

RESUMO

Whereas extracellular vesicle (EV) research has become commonplace in different biomedical fields, this field of research is still in its infancy in mycology. Here we provide a robust set of data regarding the structural and compositional aspects of EVs isolated from the fungal pathogenic species Cryptococcus neoformans, C. deneoformans and C. deuterogattii. Using cutting-edge methodological approaches including cryogenic electron microscopy and cryogenic electron tomography, proteomics, and flow cytometry, we revisited cryptococcal EV features and suggest a new EV structural model, in which the vesicular lipid bilayer is covered by mannoprotein-based fibrillar decoration, bearing the capsule polysaccharide as its outer layer. About 10% of the EV population is devoid of fibrillar decoration, adding another aspect to EV diversity. By analysing EV protein cargo from the three species, we characterized the typical Cryptococcus EV proteome. It contains several membrane-bound protein families, including some Tsh proteins bearing a SUR7/PalI motif. The presence of known protective antigens on the surface of Cryptococcus EVs, resembling the morphology of encapsulated virus structures, suggested their potential as a vaccine. Indeed, mice immunized with EVs obtained from an acapsular C. neoformans mutant strain rendered a strong antibody response in mice and significantly prolonged their survival upon C. neoformans infection.


Assuntos
Cryptococcus neoformans/imunologia , Cryptococcus neoformans/metabolismo , Vesículas Extracelulares/imunologia , Vesículas Extracelulares/metabolismo , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Vacinas/imunologia , Motivos de Aminoácidos , Animais , Antígenos de Fungos/imunologia , Antígenos de Fungos/metabolismo , Microscopia Crioeletrônica , Criptococose/imunologia , Vesículas Extracelulares/microbiologia , Feminino , Proteínas Fúngicas/imunologia , Proteínas Fúngicas/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Proteoma , Proteômica/métodos
10.
Front Immunol ; 12: 677798, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122441

RESUMO

Humoral immune components have been individually studied in the context of interaction of host with Aspergillus fumigatus, a major airborne fungal pathogen. However, a global view of the multitude and complex nature of humoral immune components is needed to bring new insight into host-Aspergillus interaction. Therefore, we undertook comparative proteomic analysis of the bronchoalveolar lavage fluid collected from individuals infected or colonized with A. fumigatus versus controls, to identify those alveolar humoral components affected upon A. fumigatus infection. Complement proteins C1q, C8 beta-chain, factor-H, ficolin-1, ficolin-2, mannan binding lectin serine peptidase 2, pentraxin-3 and the surfactant protein-D were identified as the major humoral immune components affected by A. fumigatus infection and colonization. Based on this observation, we hypothesize that crosstalk between these humoral components is essential during host-Aspergillus interaction giving new specific leads to study for better understanding the pathogenesis. Furthermore, the affected humoral components could be potential diagnostic markers of A. fumigatus infection or colonization.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/genética , Líquido da Lavagem Broncoalveolar/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Humoral , Proteoma/imunologia , Proteômica/métodos , Idoso , Aspergilose/microbiologia , Líquido da Lavagem Broncoalveolar/microbiologia , Estudos de Casos e Controles , Proteínas do Sistema Complemento/imunologia , Citocinas/imunologia , Feminino , Humanos , Imunidade Inata , Masculino , Pessoa de Meia-Idade , Mapas de Interação de Proteínas , Alvéolos Pulmonares/imunologia , Alvéolos Pulmonares/microbiologia , RNA Fúngico/genética , RNA Ribossômico 28S/genética
11.
Front Cell Infect Microbiol ; 11: 643312, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718288

RESUMO

Although belong to the same genus, Aspergillus fumigatus is primarily involved in invasive pulmonary infection, whereas Aspergillus flavus is a common cause of superficial infection. In this study, we compared conidia (the infective propagules) of these two Aspergillus species. In immunocompetent mice, intranasal inoculation with conidia of A. flavus resulted in significantly higher inflammatory responses in the lungs compared to mice inoculated with A. fumigatus conidia. In vitro assays revealed that the dormant conidia of A. flavus, unlike A. fumigatus dormant conidia, are immunostimulatory. The conidial surface of A. fumigatus was covered by a rodlet-layer, while that of A. flavus were presented with exposed polysaccharides. A. flavus harbored significantly higher number of proteins in its conidial cell wall compared to A. fumigatus conidia. Notably, ß-1,3-glucan in the A. flavus conidial cell-wall showed significantly higher percentage of branching compared to that of A. fumigatus. The polysaccharides ensemble of A. flavus conidial cell wall stimulated the secretion of proinflammatory cytokines, and conidial cell wall associated proteins specifically stimulated IL-8 secretion from the host immune cells. Furthermore, the two species exhibited different sensitivities to antifungal drugs targeting cell wall polysaccharides, proposing the efficacy of species-specific treatment strategies. Overall, the species-specific organization of the conidial cell wall could be important in establishing infection by the two Aspergillus species.


Assuntos
Aspergillus fumigatus , Aspergillus , Animais , Aspergillus flavus , Parede Celular , Camundongos , Esporos Fúngicos
12.
Microorganisms ; 8(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036329

RESUMO

Candida albicans is a commensal polymorphic and opportunistic fungus, which usually resides as a small community in the oral cavities of a majority of humans. The latter eco-system presents this yeast varied opportunities for mutualistic interactions with other cohabitant oral bacteria, that synergizes its persistence and pathogenicity. Collectively, these communities live within complex plaque biofilms which may adversely affect the oral health and increase the proclivity for oral candidiasis. The proteome of such oral biofilms with myriad interkingdom interactions are largely underexplored. Herein, we employed limma differential expression analysis, and cluster analysis to explore the proteomic interactions of C. albicans biofilms with nine different common oral bacterial species, Aggregatibacter actinomycetemcomitans, Actinomyces naeslundii, Fusobacterium nucleatum, Enterococcus faecalis, Porphyromonas gingivalis, Streptococcus mutants, Streptococcus sanguinis, Streptococcus mitis, and Streptococcus sobrinus. Interestingly, upon exposure of C. albicans biofilms to the foregoing heat-killed bacteria, the proteomes of the fungus associated with cellular respiration, translation, oxidoreductase activity, and ligase activity were significantly altered. Subsequent differential expression and cluster analysis revealed the subtle, yet significant alterations in the C. albicans proteome, particularly on exposure to bacteria with dissimilar cell morphologies, and Gram staining characteristics.

13.
J Fungi (Basel) ; 6(3)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859091

RESUMO

Immune inertness of Aspergillus fumigatus conidia is attributed to its surface rodlet-layer made up of RodAp, characterized by eight conserved cysteine residues forming four disulfide bonds. Earlier, we showed that the conserved cysteine residue point (ccrp) mutations result in conidia devoid of the rodlet layer. Here, we extended our study comparing the surface organization and immunoreactivity of conidia carrying ccrp-mutations with the RODA deletion mutant (∆rodA). Western blot analysis using anti-RodAp antibodies indicated the absence of RodAp in the cytoplasm of ccrp-mutant conidia. Immunolabeling revealed differential reactivity to conidial surface glucans, the ccrp-mutant conidia preferentially binding to α-(1,3)-glucan, ∆rodA conidia selectively bound to ß-(1,3)-glucan; the parental strain conidia showed negative labeling. However, permeability of ccrp-mutants and ∆rodA was similar to the parental strain conidia. Proteomic analyses of the conidial surface exposed proteins of the ccrp-mutants showed more similarities with the parental strain, but were significantly different from the ∆rodA. Ccrp-mutant conidia were less immunostimulatory compared to ∆rodA conidia. Our data suggest that (i) the conserved cysteine residues are essential for the trafficking of RodAp and the organization of the rodlet layer on the conidial surface, and (ii) targeted point mutation could be an alternative approach to study the role of fungal cell-wall genes in host-fungal interaction.

14.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32571987

RESUMO

Even though both cellular and humoral immunities contribute to host defense, the role played by humoral immunity against the airborne opportunistic fungal pathogen Aspergillus fumigatus has been underexplored. In this study, we aimed at deciphering the role of the complement system, the major humoral immune component, against A. fumigatus Mass spectrometry analysis of the proteins extracted from A. fumigatus conidial (asexual spores and infective propagules) surfaces opsonized with human serum indicated that C3 is the major complement protein involved. Flow cytometry and immunolabeling assays further confirmed C3b (activated C3) deposition on the conidial surfaces. Assays using cell wall components of conidia indicated that the hydrophobin RodAp, ß-(1,3)-glucan (BG) and galactomannan (GM) could efficiently activate C3. Using complement component-depleted sera, we showed that while RodAp activates C3 by the alternative pathway, BG and GM partially follow the classical and lectin pathways, respectively. Opsonization facilitated conidial aggregation and phagocytosis, and complement receptor (CR3 and CR4) blockage on phagocytes significantly inhibited phagocytosis, indicating that the complement system exerts a protective role against conidia by opsonizing them and facilitating their phagocytosis mainly through complement receptors. Conidial opsonization with human bronchoalveolar lavage fluid (BALF) confirmed C3 to be the major complement protein interacting with conidia. Nevertheless, complement C2 and mannose-binding lectin (MBL), the classical and lectin pathway components, respectively, were not identified, indicating that BALF activates the alternative pathway on the conidial surface. Moreover, the cytokine profiles were different upon stimulation of phagocytes with serum- and BALF-opsonized conidia, highlighting the importance of studying interaction of conidia with complement proteins in their biological niche.


Assuntos
Aspergillus fumigatus/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Complemento C3/imunologia , Polissacarídeos Fúngicos/farmacologia , Macrófagos/efeitos dos fármacos , Soro/imunologia , Esporos Fúngicos/imunologia , Aspergilose/genética , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/química , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Parede Celular/química , Parede Celular/imunologia , Ativação do Complemento/efeitos dos fármacos , Complemento C3/genética , Citocinas/biossíntese , Citocinas/imunologia , Polissacarídeos Fúngicos/imunologia , Polissacarídeos Fúngicos/isolamento & purificação , Galactose/análogos & derivados , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Integrina alfaXbeta2/genética , Integrina alfaXbeta2/imunologia , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Mananas/imunologia , Mananas/isolamento & purificação , Mananas/farmacologia , Proteínas Opsonizantes/farmacologia , Fagocitose/efeitos dos fármacos , Cultura Primária de Células , Ligação Proteica , Espécies Reativas de Oxigênio , Soro/química , Soro/microbiologia , Esporos Fúngicos/química , beta-Glucanas/imunologia , beta-Glucanas/isolamento & purificação , beta-Glucanas/farmacologia
15.
mBio ; 11(3)2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32546620

RESUMO

Aspergillus fumigatus is the leading cause of pulmonary fungal diseases. Azoles have been used for many years as the main antifungal agents to treat and prevent invasive aspergillosis. However, in the last 10 years there have been several reports of azole resistance in A. fumigatus and new strategies are needed to combat invasive aspergillosis. Caspofungin is effective against other human-pathogenic fungal species, but it is fungistatic only against A. fumigatus Resistance to caspofungin in A. fumigatus has been linked to mutations in the fksA gene that encodes the target enzyme of the drug ß-1,3-glucan synthase. However, tolerance of high caspofungin concentrations, a phenomenon known as the caspofungin paradoxical effect (CPE), is also important for subsequent adaptation and drug resistance evolution. Here, we identified and characterized the transcription factors involved in the response to CPE by screening an A. fumigatus library of 484 null transcription factors (TFs) in CPE drug concentrations. We identified 11 TFs that had reduced CPE and that encoded proteins involved in the basal modulation of the RNA polymerase II initiation sites, calcium metabolism, and cell wall remodeling. One of these TFs, FhdA, was important for mitochondrial respiratory function and iron metabolism. The ΔfhdA mutant showed decreased growth when exposed to Congo red or to high temperature. Transcriptome sequencing (RNA-seq) analysis and further experimental validation indicated that the ΔfhdA mutant showed diminished respiratory capacity, probably affecting several pathways related to the caspofungin tolerance and resistance. Our results provide the foundation to understand signaling pathways that are important for caspofungin tolerance and resistance.IMPORTANCEAspergillus fumigatus, one of the most important human-pathogenic fungal species, is able to cause aspergillosis, a heterogeneous group of diseases that presents a wide range of clinical manifestations. Invasive pulmonary aspergillosis is the most serious pathology in terms of patient outcome and treatment, with a high mortality rate ranging from 50% to 95% primarily affecting immunocompromised patients. Azoles have been used for many years as the main antifungal agents to treat and prevent invasive aspergillosis. However, there were several reports of evolution of clinical azole resistance in the last decade. Caspofungin, a noncompetitive ß-1,3-glucan synthase inhibitor, has been used against A. fumigatus, but it is fungistatic and is recommended as second-line therapy for invasive aspergillosis. More information about caspofungin tolerance and resistance is necessary in order to refine antifungal strategies that target the fungal cell wall. Here, we screened a transcription factor (TF) deletion library for TFs that can mediate caspofungin tolerance and resistance. We have identified 11 TFs that are important for caspofungin sensitivity and/or for the caspofungin paradoxical effect (CPE). These TFs encode proteins involved in the basal modulation of the RNA polymerase II initiation sites, calcium metabolism or cell wall remodeling, and mitochondrial respiratory function. The study of those genes regulated by TFs identified in this work will provide a better understanding of the signaling pathways that are important for caspofungin tolerance and resistance.


Assuntos
Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Caspofungina/farmacologia , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antifúngicos/farmacologia , Aspergilose/microbiologia , Feminino , Regulação Fúngica da Expressão Gênica , Biblioteca Gênica , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Transdução de Sinais
16.
Front Immunol ; 11: 38, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32047500

RESUMO

In humans, loss-of-function mutation in the Signal Transducer and Activator of Transcription 3 (STAT3) gene is frequently associated with susceptibility to bacterial as well as fungal infections including aspergillosis, although its pathogenesis remains largely unknown. In the present study, we investigated the immune responses obtained after stimulation with Aspergillus fumigatus in STAT3-deficient patients. A. fumigatus conidial killing efficiencies of both monocytes and neutrophils isolated from whole blood samples of STAT3-deficient patients were not different compared to those of healthy controls. After stimulation with A. fumigatus conidia, lower concentrations of adaptive cytokines (IFN-γ, IL-17 and IL-22) were secreted by peripheral blood mononuclear cells from STAT3-deficient patients compared to those from healthy controls. Moreover, the frequency of IFN-γ and IL-17 producing CD4+ T cells was lower in STAT3-deficient patients vs. healthy controls. Among the STAT3-deficient patients, those with aspergillosis showed further lower secretion of IFN-γ upon stimulation of their PBMCs with A. fumigatus conidia compared to the patients without aspergillosis. Together, our study indicated that STAT3-deficiency leads to a defective adaptive immune response against A. fumigatus infection, particularly with a lower IFN-γ and IL-17 responses in those with aspergillosis, suggesting potential therapeutic benefit of recombinant IFN-γ in STAT3-deficient patients with aspergillosis.


Assuntos
Aspergilose/sangue , Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Interferon gama/metabolismo , Ativação Linfocitária/imunologia , Fator de Transcrição STAT3/deficiência , Células Th17/imunologia , Adulto , Aspergilose/microbiologia , Estudos de Casos e Controles , Células Cultivadas , Feminino , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Imunoglobulina G/sangue , Imunoglobulina G/imunologia , Interleucina-17/metabolismo , Síndrome de Job/imunologia , Mutação com Perda de Função , Masculino , Pessoa de Meia-Idade , Monócitos/imunologia , Neutrófilos/imunologia , Fator de Transcrição STAT3/genética , Adulto Jovem
17.
mSphere ; 5(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915215

RESUMO

Methodologies to identify epitopes or ligands of the fungal cell wall polysaccharides influencing the immune response of human pathogens have to date been imperfect. Using the galactomannan (GM) of Aspergillus fumigatus as a model, we have shown that synthetic oligosaccharides of distinct structures representing key fragments of cell wall polysaccharides are the most precise tools to study the serological and immunomodulatory properties of a fungal polysaccharide.


Assuntos
Antígenos de Fungos/imunologia , Aspergillus fumigatus/química , Parede Celular/imunologia , Mananas/imunologia , Oligossacarídeos/síntese química , Oligossacarídeos/imunologia , Antígenos de Fungos/química , Aspergilose/microbiologia , Epitopos/química , Epitopos/imunologia , Galactose/análogos & derivados , Humanos , Imunomodulação
18.
ACS Appl Mater Interfaces ; 11(50): 46591-46603, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31742377

RESUMO

Oral candidiasis as a highly prevalent and recurrent infection in medically compromised individuals is mainly caused by the opportunistic fungal pathogen Candida albicans. This epithelial infection, if not controlled effectively, can progress to life-threatening systemic conditions and complications. The efficacy of current frontline antifungals is limited due to their poor bioavailability and systemic toxicity. As such, an efficient intervention is essential for controlling disease progression and recurrence. Herein, a theranostic nanoplatform (CD-Gu+-AmB) was developed to track the penetration of antifungals and perturb the invasion of C. albicans at oral epithelial tissues, via decorating the homemade red-emissive carbon dots (CD) with positively charged guanidine groups (Gu+) followed by conjugation with antifungal polyene (amphotericin B, AmB) in a reacting site-controllable manner. The generated CD-Gu+-AmB favorably gathered within the Candida cells and exhibited potent antifungal effects in both planktonic and biofilm forms. It selectively accumulated in the nuclei of human oral keratinocytes and exhibited undetectable toxicity to the host cells. Moreover, we reported for the first time the penetration and exfoliation profiles of CD in a three-dimensional organotypic model of human oral epithelial tissues, demonstrating that the extra- and intracellular accumulation of CD-Gu+-AmB effectively resisted the invasion of C. albicans by forming a "shielding" layer throughout the entire tissue. This study establishes a multifunctional CD-based theranostic nanoplatform functioning as a traceable and topically applied antifungal to arm oral epithelia, thereby shedding light on early intervention of mucosal candidiasis for oral and general health.


Assuntos
Anfotericina B/farmacologia , Antifúngicos/farmacologia , Candidíase/tratamento farmacológico , Infecções Fúngicas Invasivas/tratamento farmacológico , Anfotericina B/química , Antifúngicos/química , Biofilmes/efeitos dos fármacos , Disponibilidade Biológica , Candida albicans/efeitos dos fármacos , Candida albicans/patogenicidade , Candidíase/microbiologia , Carbono/química , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/microbiologia , Guanosina Monofosfato/química , Humanos , Infecções Fúngicas Invasivas/microbiologia , Queratinócitos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/microbiologia , Polienos/química , Polienos/farmacologia , Pontos Quânticos/química
19.
Bioconjug Chem ; 30(6): 1788-1797, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31125199

RESUMO

ß-(1,3)-Glucan is one of the antigenic components of the bacterial as well as fungal cell wall. We designed microcapsules (MCs) ligated with ß-(1,3)-glucan, to study its immunomodulatory effect. The MCs were obtained by interfacial polycondensation between diacyl chloride (sebacoyl chloride and terephtaloyl chloride) and diethylenetriamine in organic and aqueous phases, respectively. Planar films were first designed to optimize monomer compositions and to examine the kinetics of film formation. MCs with aqueous fluorescent core were then obtained upon controlled emulsification-polycondensation reactions using optimized monomer compositions and adding fluorescein into the aqueous phase. The selected MC-formulation was grafted with Curdlan, a linear ß-(1,3)-glucan from  Agrobacterium species or branched ß-(1,3)-glucan isolated from the cell wall of Aspergillus fumigatus. These ß-(1,3)-glucan grafted MCs were phagocytosed by human monocyte-derived macrophages, and stimulated cytokine secretion. Moreover, the blocking of dectin-1, a ß-(1,3)-glucan recognizing receptor, did not completely inhibit the phagocytosis of these ß-(1,3)-glucan grafted MCs, suggesting the involvement of other receptors in the recognition and uptake of ß-(1,3)-glucan. Overall, grafted MCs are a useful tool for the study of the mechanism of phagocytosis and immunomodulatory effect of the microbial polysaccharides.


Assuntos
Adjuvantes Imunológicos/farmacologia , Agrobacterium/química , Aspergillus fumigatus/química , Cápsulas , Parede Celular/química , Polissacarídeos/farmacologia , beta-Glucanas/química , Microscopia Eletrônica de Varredura , Reologia
20.
J Biol Chem ; 293(40): 15538-15555, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30139746

RESUMO

Innate immunity in animals including humans encompasses the complement system, which is considered an important host defense mechanism against Aspergillus fumigatus, one of the most ubiquitous opportunistic human fungal pathogens. Previously, it has been shown that the alkaline protease Alp1p secreted from A. fumigatus mycelia degrades the complement components C3, C4, and C5. However, it remains unclear how the fungal spores (i.e. conidia) defend themselves against the activities of the complement system immediately after inhalation into the lung. Here, we show that A. fumigatus conidia contain a metalloprotease Mep1p, which is released upon conidial contact with collagen and inactivates all three complement pathways. In particular, Mep1p efficiently inactivated the major complement components C3, C4, and C5 and their activation products (C3a, C4a, and C5a) as well as the pattern-recognition molecules MBL and ficolin-1, either by directly cleaving them or by cleaving them to a form that is further broken down by other proteases of the complement system. Moreover, incubation of Mep1p with human serum significantly inhibited the complement hemolytic activity and conidial opsonization by C3b and their subsequent phagocytosis by macrophages. Together, these results indicate that Mep1p associated with and released from A. fumigatus conidia likely facilitates early immune evasion by disarming the complement defense in the human host.


Assuntos
Aspergillus fumigatus/imunologia , Complemento C3/genética , Complemento C4/genética , Complemento C5/genética , Aspergilose Pulmonar Invasiva/imunologia , Metaloendopeptidases/imunologia , Animais , Aspergillus fumigatus/crescimento & desenvolvimento , Aspergillus fumigatus/patogenicidade , Colágeno/genética , Colágeno/imunologia , Complemento C3/metabolismo , Complemento C4/metabolismo , Complemento C5/metabolismo , Modelos Animais de Doenças , Proteínas Fúngicas/genética , Proteínas Fúngicas/imunologia , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Evasão da Resposta Imune , Imunidade Inata , Aspergilose Pulmonar Invasiva/genética , Aspergilose Pulmonar Invasiva/microbiologia , Aspergilose Pulmonar Invasiva/patologia , Lectinas/genética , Lectinas/imunologia , Pulmão/imunologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Serina Proteases Associadas a Proteína de Ligação a Manose/genética , Serina Proteases Associadas a Proteína de Ligação a Manose/imunologia , Metaloendopeptidases/deficiência , Metaloendopeptidases/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fagocitose , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/imunologia , Esporos Fúngicos/patogenicidade , Ficolinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA