Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 154: 111078, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32319911

RESUMO

The study, for the first time, evaluated the leaching rate of zinc oxide nanoparticles (nZnO) from human skins which were applied with three commercial sunscreens containing nZnO as an active ingredient. The leaching rate of nZnO varied greatly among the sunscreens, with a range of 8-72% (mean ± SD: 45% ± 33%). We further investigated their toxicities to the marine copepod Tigriopus japonicus. We found that 96-h median lethal concentrations of the three sunscreens to T. japonicus were > 5000, 230.6, and 43.0 mg chemical L-1, respectively, equivalent to Zn2+ concentrations at >82.5, 3.2, and 1.2 mg Zn L-1, respectively. Exposure to the individual sunscreens at environmentally realistic concentrations for 96 h led to up-regulation of antioxidant genes in T. japonicus, while they triggered the release of reactive oxygen species based on the results of in vivo assays. Evidently, these nZnO-included sunscreens can cause oxidative stress and hence pose risk to marine organisms.


Assuntos
Copépodes , Nanopartículas , Poluentes Químicos da Água/farmacologia , Óxido de Zinco , Animais , Estresse Oxidativo/efeitos dos fármacos , Protetores Solares
2.
Mar Pollut Bull ; 153: 110973, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32275530

RESUMO

This study compared in vivo acute toxicities of nine engineered nano metal oxides to the marine diatom Skeletonema costatum and rotifer Brachionus koreanus. The sequence of their toxicities to S. costatum, based on growth inhibition, was: nano zinc oxide (nZnO) > nTiO2 (rutile) > nMgO > Annealed nMgO > nTiO2 (anatase) > Î³-nAl2O3 > nIn2O3 > α-nAl2O3 > nSnO2. Similarly, nZnO was also the most toxic to B. koreanus, but the other nano metal oxides were non-lethal. nMgO and nZnO were confirmed to trigger reactive oxygen species (ROS) mediated toxicity to the two marine organisms, while nTiO2 (both anatase and rutile forms) likely induced oxidative stress as shown by their acellular ROS production. nZnO may also cause damage in the endocrine system of B. koreanus, as indicated by the increased transcription of retinoid X receptor. Annealed nMgO reduces its toxicity via removal of O2- and impurities from its surface.


Assuntos
Diatomáceas/fisiologia , Nanopartículas Metálicas/toxicidade , Rotíferos/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Diatomáceas/efeitos dos fármacos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Rotíferos/efeitos dos fármacos
3.
J Photochem Photobiol B ; 151: 17-24, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26143160

RESUMO

A number of different nanomaterials produced and incorporated into various products are rising. However, their environmental hazards are frequently unknown. Here we consider three different metal oxide compounds (SnO2, In2O3, and Al2O3), which have not been extensively studied and are expected to have low toxicity. This study aimed to comprehensively characterize the physicochemical properties of these nanomaterials and investigate their toxicity on bacteria (Escherichia coli) under UV illumination and in the dark, as well as on a marine diatom (Skeletonema costatum) under ambient illumination/dark (16-8h) cycles. The material properties responsible for their low toxicity have been identified based on comprehensive experimental characterizations and comparison to a metal oxide exhibiting significant toxicity under illumination (anatase TiO2). The metal oxide materials investigated exhibited significant difference in surface properties and interaction with the living organisms. In order for a material to exhibit significant toxicity, it needs to be able to both form a stable suspension in the culture medium and to interact with the cell walls of the test organism. Our results indicated that the observed low toxicities of the three nanomaterials could be attributed to the limited interaction between the nanoparticles and cell walls of the test organisms. This could occur either due to the lack of significant attachment between nanoparticles and cell walls, or due to their tendency to aggregate in solution.


Assuntos
Parede Celular/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Óxido de Alumínio/toxicidade , Antibacterianos/farmacologia , Antibacterianos/toxicidade , Membrana Celular/efeitos dos fármacos , Parede Celular/química , Diatomáceas/efeitos dos fármacos , Ecotoxicologia/métodos , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Índio/toxicidade , Lipopolissacarídeos/química , Microscopia Eletrônica de Transmissão , Espécies Reativas de Oxigênio/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Compostos de Estanho/toxicidade , Titânio/toxicidade , Raios Ultravioleta
4.
Aquat Toxicol ; 165: 31-40, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26011135

RESUMO

This study comprehensively investigated the influences of salinity, exposure concentration and time on the aggregate size, surface charge and dissolution of zinc oxide nanoparticles (ZnO-NPs; 20nm) in seawater, and examined the interacting effect of salinity and waterborne exposure of ZnO-NPs on the marine diatom Thalassiosira pseudonana for 96h. We found that aggregate sizes of ZnO-NPs significantly increased with increasing salinity, but generally decreased with increasing exposure concentration. Ion release decreased with increasing salinity, whereas the surface charge of the particles was not affected by salinity. The increased aggregate size and decreased ion release with increasing salinity, and consequently lower concentration of bioavailable zinc ions, resulted in decreased toxicity of ZnO-NPs at higher salinity in general in terms of growth inhibition (IC50) and chlorophyll fluorescence (EC50 - ФPo and EC50 - Ф2). However, IC50s and EC50s of ZnO-NPs were smaller than those of Zn(2+) (from ZnO-NPs ultrafiltrate and ZnCl2), indicating that dissolved Zn(2+) can only partially explain the toxicity of ZnO-NPs. SEM images showed that ZnO-NPs attached on the diatom frustule surface, suggesting that the interaction between the nanoparticles and the cell surface may acerbate the toxicity of ZnO-NPs. Our results linked the physicochemical characteristics of ZnO-NPs in seawater with their toxicities to the marine diatom and highlighted the importance of salinity as an influential environmental factor governing the aggregation, dissolution and the toxicity of ZnO-NPs.


Assuntos
Diatomáceas/efeitos dos fármacos , Nanopartículas/toxicidade , Salinidade , Poluentes Químicos da Água/toxicidade , Óxido de Zinco/toxicidade
5.
J Photochem Photobiol B ; 145: 48-59, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25768267

RESUMO

Conflicting reports on the toxicity of CeO2 nanomaterials have been published in recent years, with some studies finding CeO2 nanoparticles to be toxic, while others found it to have protective effects against oxidative stress. To investigate the possible reasons for this, we have performed a comprehensive study on the physical and chemical properties of nanosized CeO2 from three different suppliers as well as CeO2 synthesized by us, and tested their toxicity. For toxicity tests, we have studied the effects of CeO2 nanoparticles on a Gram-negative bacterium Escherichia coli in the dark, under ambient and UV illuminations. We have also performed toxicity tests on the marine diatom Skeletonema costatum under ambient and UV illuminations. We found that the CeO2 nanoparticle samples exhibited significantly different toxicity, which could likely be attributed to the differences in interactions with cells, and possibly to differences in nanoparticle compositions. Our results also suggest that toxicity tests on bacteria may not be suitable for predicting the ecotoxicity of nanomaterials. The relationship between the toxicity and physicochemical properties of the nanoparticles is explicitly discussed in the light of the current results.


Assuntos
Cério/química , Nanopartículas Metálicas/química , Diatomáceas/efeitos dos fármacos , Diatomáceas/efeitos da radiação , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/efeitos dos fármacos , Escherichia coli/efeitos da radiação , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/ultraestrutura , Microscopia Eletrônica de Varredura , Raios Ultravioleta
6.
Nanotoxicology ; 8 Suppl 1: 24-35, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24219175

RESUMO

This study, for the first time, concurrently investigated the influence of seawater temperature, exposure concentration and time on the aggregation size and ion dissolution of nano zinc oxides (nZnO) in seawater, and the interacting effect of temperature and waterborne exposure of nZnO to the marine diatom Skeletonema costatum, amphipod Melita longidactyla and fish Oryzias melastigma, respectively. Our results showed that aggregate size was jointly affected by seawater temperature, nZnO concentration and exposure time. Among the three factors, the concentration of nZnO was the most important and followed by exposure time, whereas temperature was less important as reflected by their F values in the three-way analysis of variance (concentration: F3, 300 = 247.305; time: F2, 300 = 20.923 and temperature: F4, 300 = 4.107; All p values <0.001). The aggregate size generally increased with increasing nZnO concentration and exposure time. The release of Zn ions from nZnO was significantly influenced by seawater temperature and exposure time; the ion dissolution rate generally increased with decreasing temperature and increasing exposure time. Growth inhibition of diatoms increased with increasing temperature, while temperature and nZnO had an interactional effect on their photosynthesis. For the amphipod, mortality was positively correlated with temperature. Fish larvae growth rate was only affected by temperature but not nZnO, while the two factors interactively modulated the expression of heat shock and metallothionein proteins. Evidently, temperature can influence aggregate size and ion dissolution and thus toxicity of nZnO to the marine organisms in a species-specific manner.


Assuntos
Anfípodes/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Peixes , Nanopartículas/toxicidade , Óxido de Zinco/toxicidade , Animais , Solubilidade , Temperatura
7.
Anal Bioanal Chem ; 396(2): 609-18, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19902187

RESUMO

Nano zinc oxide (nZnO) is increasingly used in sunscreen products, with high potential of being released directly into marine environments. This study primarily aimed to characterize the aggregate size and solubility of nZnO and bulk ZnO, and to assess their toxicities towards five selected marine organisms. Chemical characterization showed that nZnO formed larger aggregates in seawater than ZnO, while nZnO had a higher solubility in seawater (3.7 mg L(-1)) than that of ZnO (1.6 mg L(-1)). Acute tests were conducted using the marine diatoms Skeletonema costatum and Thalassiosia pseudonana, the crustaceans Tigriopus japonicus and Elasmopus rapax, and the medaka fish Oryzias melastigma. In general, nZnO was more toxic towards algae than ZnO, but relatively less toxic towards crustaceans and fish. The toxicity of nZnO could be mainly attributed to dissolved Zn(2+) ions. Furthermore, molecular biomarkers including superoxide dismutase (SOD), metallothionein (MT) and heat shock protein 70 (HSP70) were employed to assess the sublethal toxicities of the test chemicals to O. melastigma. Although SOD and MT expressions were not significantly increased in nZnO-treated medaka compared to the controls, exposure to ZnO caused a significant up-regulation of SOD and MT. HSP70 was increased two to fourfold in all treatments indicating that there were probably other forms of stress in additional to oxidative stress such as cellular injury.


Assuntos
Copépodes/efeitos dos fármacos , Diatomáceas/efeitos dos fármacos , Oryzias/genética , Óxido de Zinco/química , Óxido de Zinco/toxicidade , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Oryzias/metabolismo , Tamanho da Partícula , Água do Mar/análise , Solubilidade , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA