Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Mol Imaging Biol ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684581

RESUMO

PURPOSE: Gadolinium (Gd)-based contrast agents are primarily used for contrast-enhanced magnetic resonance lymphangiography (MRL). However, overcoming venous contamination issues remains challenging. This study aims to assess the MRL efficacy of the newly developed iron-based contrast agent (INV-001) that is specially designed to mitigate venous contamination issues. The study further explores the optimal dosage, including both injection volume and concentration, required to achieve successful visualization of the popliteal lymph nodes and surrounding lymphatic vessels. PROCEDURES: All animals utilized in this study were male Sprague-Dawley (SD) rats weighing between 250 and 300 g. The contrast agents prepared were injected intradermally in the fourth phalanx of both hind limbs using a 30-gauge syringe in SD rats. MRL was performed every 16 min on a coronal 3D time-of-flight sequence with saturation bands using a 9.4-T animal machine. RESULTS: Contrary to Gd-DOTA, which exhibited venous contamination in most animals irrespective of injection dosages and conditions, INV-001 showed no venous contamination. For Gd-DOTA, the popliteal lymph nodes and lymphatic vessels reached peak enhancement 16 min after injection from the injection site and then rapidly washed out. However, with INV-001, they reached peak enhancement between 16 and 32 min after injection, with prolonged visualization of the popliteal lymph node and lymphatic vessels. INV-001 at 0.45 µmol (15 mM, 30 µL) and 0.75 µmol (15 mM, 50 µL) achieved high scores for qualitative image analysis, providing good visualization of the popliteal lymph nodes and lymphatic vessels without issues of venous contamination, interstitial space enhancement, or lymph node enlargement. CONCLUSION: In MRL, INV-001, a novel T1 contrast agent based on iron, enables prolonged enhancement of popliteal lymph nodes and lymphatic vessels without venous contamination.

2.
Biomedicines ; 12(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38397986

RESUMO

Chemical exchange saturation transfer with glutamate (GluCEST) imaging is a novel technique for the non-invasive detection and quantification of cerebral Glu levels in neuromolecular processes. Here we used GluCEST imaging and 1H magnetic resonance spectroscopy (1H MRS) to assess in vivo changes in Glu signals within the hippocampus in a rat model of depression induced by a forced swim test. The forced swimming test (FST) group exhibited markedly reduced GluCEST-weighted levels and Glu concentrations when examined using 1H MRS in the hippocampal region compared to the control group (GluCEST-weighted levels: 3.67 ± 0.81% vs. 5.02 ± 0.44%, p < 0.001; and Glu concentrations: 6.560 ± 0.292 µmol/g vs. 7.133 ± 0.397 µmol/g, p = 0.001). Our results indicate that GluCEST imaging is a distinctive approach to detecting and monitoring Glu levels in a rat model of depression. Furthermore, the application of GluCEST imaging may provide a deeper insight into the neurochemical involvement of glutamate in various psychiatric disorders.

3.
Nat Commun ; 15(1): 1487, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374152

RESUMO

Proper placental development in early pregnancy ensures a positive outcome later on. The developmental relationship between the placenta and embryonic organs, such as the heart, is crucial for a normal pregnancy. However, the mechanism through which the placenta influences the development of embryonic organs remains unclear. Trophoblasts fuse to form multinucleated syncytiotrophoblasts (SynT), which primarily make up the placental materno-fetal interface. We discovered that endogenous progesterone immunomodulatory binding factor 1 (PIBF1) is vital for trophoblast differentiation and fusion into SynT in humans and mice. PIBF1 facilitates communication between SynT and adjacent vascular cells, promoting vascular network development in the primary placenta. This process affected the early development of the embryonic cardiovascular system in mice. Moreover, in vitro experiments showed that PIBF1 promotes the development of cardiovascular characteristics in heart organoids. Our findings show how SynTs organize the barrier and imply their possible roles in supporting embryogenesis, including cardiovascular development. SynT-derived factors and SynT within the placenta may play critical roles in ensuring proper organogenesis of other organs in the embryo.


Assuntos
Sistema Cardiovascular , Placenta , Proteínas da Gravidez , Animais , Feminino , Humanos , Camundongos , Gravidez , Diferenciação Celular , Desenvolvimento Embrionário , Placenta/metabolismo , Placentação/fisiologia , Proteínas da Gravidez/genética , Proteínas da Gravidez/metabolismo , Fatores Supressores Imunológicos/metabolismo , Trofoblastos/metabolismo , Sistema Cardiovascular/embriologia
4.
Biomater Res ; 27(1): 134, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102691

RESUMO

BACKGROUND: Tumor-derived exosomes are critical elements of the cell-cell communication response to various stimuli. This study aims to reveal that the histone deacetylase 5 (HDAC5) and p53 interaction upon radiation in hepatocellular carcinoma intricately regulates the secretion and composition of exosomes. METHODS: We observed that HDAC5 and p53 expression were significantly increased by 2 Gy and 4 Gy radiation exposure in HCC. Normal- and radiation-derived exosomes released by HepG2 were purified to investigate the exosomal components. RESULTS: We found that in the radiation-derived exosome, exosomal Maspin was notably increased. Maspin is known as an anti-angiogenic gene. The expression of Maspin was regulated at the cellular level by HDAC5, and it was elaborately regulated and released in the exosome. Radiation-derived exosome treatment caused significant inhibition of angiogenesis in HUVECs and mouse aortic tissues. Meanwhile, we confirmed that miR-151a-3p was significantly reduced in the radiation-derived exosome through exosomal miRNA sequencing, and three HCC-specific exosomal miRNAs were also decreased. In particular, miR-151a-3p induced an anti-apoptotic response by inhibiting p53, and it was shown to induce EMT and promote tumor growth by regulating p53-related tumor progression genes. In the HCC xenograft model, radiation-induced exosome injection significantly reduced angiogenesis and tumor size. CONCLUSIONS: Our present findings demonstrated HDAC5 is a vital gene of the p53-mediated release of exosomes resulting in tumor suppression through anti-cancer exosomal components in response to radiation. Finally, we highlight the important role of exosomal Maspin and mi-151a-3p as a biomarker in enhancing radiation treatment sensitivity. Therapeutic potential of HDAC5 through p53-mediated exosome modulation in radiation treatment of hepatocellular carcinoma.

5.
Metabolites ; 13(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37233677

RESUMO

Glutamate-weighted chemical exchange saturation transfer (GluCEST) is a useful imaging tool to detect glutamate signal alterations caused by neuroinflammation. This study aimed to visualize and quantitatively evaluate hippocampal glutamate alterations in a rat model of sepsis-induced brain injury using GluCEST and proton magnetic resonance spectroscopy (1H-MRS). Twenty-one Sprague Dawley rats were divided into three groups (sepsis-induced groups (SEP05, n = 7 and SEP10, n = 7) and controls (n = 7)). Sepsis was induced through a single intraperitoneal injection of lipopolysaccharide (LPS) at a dose of 5 mg/kg (SEP05) or 10 mg/kg (SEP10). GluCEST values and 1H-MRS concentrations in the hippocampal region were quantified using conventional magnetization transfer ratio asymmetry and a water scaling method, respectively. In addition, we examined immunohistochemical and immunofluorescence staining to observe the immune response and activity in the hippocampal region after LPS exposure. The GluCEST and 1H-MRS results showed that GluCEST values and glutamate concentrations were significantly higher in sepsis-induced rats than those in controls as the LPS dose increased. GluCEST imaging may be a helpful technique for defining biomarkers to estimate glutamate-related metabolism in sepsis-associated diseases.

6.
Heliyon ; 9(5): e15596, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37206053

RESUMO

Aryl hydrocarbon receptors (AhRs) have been reported to be important mediators of ischemic injury in the brain. Furthermore, the pharmacological inhibition of AhR activation after ischemia has been shown to attenuate cerebral ischemia-reperfusion (IR) injury. Here, we investigated whether AhR antagonist administration after ischemia was also effective in ameliorating hepatic IR injury. A 70% partial hepatic IR (45-min ischemia and 24-h reperfusion) injury was induced in rats. We administered 6,2',4'-trimethoxyflavone (TMF, 5 mg/kg) intraperitoneally 10 min after ischemia. Hepatic IR injury was observed using serum, magnetic resonance imaging-based liver function indices, and liver samples. TMF-treated rats showed significantly lower relative enhancement (RE) values and serum alanine aminotransferase (ALT) and aspartate aminotransferase levels than did untreated rats at 3 h after reperfusion. After 24 h of reperfusion, TMF-treated rats had significantly lower RE values, ΔT1 values, serum ALT levels, and necrotic area percentage than did untreated rats. The expression of the apoptosis-related proteins, Bax and cleaved caspase-3, was significantly lower in TMF-treated rats than in untreated rats. This study demonstrated that inhibition of AhR activation after ischemia was effective in ameliorating IR-induced liver injury in rats.

7.
Sci Adv ; 8(48): eabq0898, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36459558

RESUMO

C1q/tumor necrosis factor-related protein 9 (CTRP9) is an adipokine and has high potential as a therapeutic target. However, the role of CTRP9 in cardiovascular disease pathogenesis remains unclear. We found CTRP9 to induce HDAC7 and p38 MAPK phosphorylation via tight regulation of AMPK in vascular endothelial cells, leading to angiogenesis through increased MEF2 activity. The expression of CTRP9 and atheroprotective MEF2 was decreased in plaque tissue of atherosclerotic patients and the ventricle of post-infarction mice. CTRP9 treatment inhibited the formation of atherosclerotic plaques in ApoE KO and CTRP9 KO mice. In addition, CTRP9 induced significant ischemic injury prevention in the post-MI mice. Clinically, serum CTRP9 levels were reduced in patients with MI compared with healthy controls. In summary, CTRP9 induces a vasoprotective response via the AMPK/HDAC7/p38 MAPK pathway in vascular endothelial cells, whereas its absence can contribute to atherosclerosis and MI. Hence, CTRP9 may represent a valuable therapeutic target and biomarker in cardiovascular diseases.


Assuntos
Aterosclerose , Infarto do Miocárdio , Animais , Camundongos , Proteínas Angiogênicas , Adipocinas , Complemento C1q , Células Endoteliais , Proteínas Quinases Ativadas por AMP , Histona Desacetilases/genética , Proteínas Quinases p38 Ativadas por Mitógeno , Glicoproteínas , Adiponectina/genética
8.
J Clin Transl Hepatol ; 10(6): 1167-1175, 2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36381105

RESUMO

Background and Aims: Efficacy evaluations with preclinical magnetic resonance imaging (MRI) are uncommon, but MRI in the preclinical phase of drug development provides information that is useful for longitudinal monitoring. The study aim was to monitor the protective effectiveness of silymarin with multiparameter MRI and biomarkers in a thioacetamide (TAA)-induced model of liver injury in rats. Correlation analysis was conducted to assess compare the monitoring of liver function by MRI and biomarkers. Methods: TAA was injected three times a week for 8 weeks to generate a disease model (TAA group). In the TAA and silymarin-treated (TAA-SY) groups, silymarin was administered three times weekly from week 4. MR images were acquired at 0, 2, 4, 6, and 8 weeks in the control, TAA, and TAA-SY groups. Results: The area under the curve to maximum time (AUCtmax) and T2* values of the TAA group decreased over the study period, but the serological markers of liver abnormality increased significantly more than those in the control group. In the TAA-SY group, MRI and serological biomarkers indicated attenuation of liver function as in the TAA group. However, pattern changes were observed from week 6 to comparable levels in the control group with silymarin treatment. Negative correlations between either AUCtmax or T2* values and the serological biomarkers were observed. Conclusions: Silymarin had hepatoprotective effects on TAA-induced liver injury and demonstrated the usefulness of multiparametric MRI to evaluate efficacy in preclinical studies of liver drug development.

9.
Biochem Biophys Res Commun ; 632: 85-91, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36206598

RESUMO

Although epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) have shown dramatic response and improvement in treating lung cancer with mutant EGFR, the emergence of drug resistance remains a major problem. In particular, some mutations including T790 M and C797S have been recognized as mechanisms of acquired resistance because they weaken binding affinity to drugs. To date, many attempts have been made to develop a new drug for overcoming acquired resistance to EGFR-TKIs, including secondary mutations. However, an appropriate animal model to evaluate in vivo efficacy during novel drug development remains lacking. In this study, we generated a novel transgenic mouse model that conditionally expresses human EGFRL858R/T790M/C797S and firefly luciferase using Cas9-mediated homology-independent targeted integration. Using a lung-specific Sftpc-CreERT2 mouse line, we induced expression of both the human EGFRL858R/T790M/C797S transgene and firefly luciferase in the lungs of adult mice. The expression of these genes and lung cancer occurrence was monitored using an in vivo imaging system and magnetic resonance imaging, respectively. Overall, our mouse model can be utilized to develop new drugs for overcoming C797S-mediated resistance to osimertinib; further, such knock-in systems for expressing oncogenes may be applied to study tumorigenesis and the development of other targeted agents.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Compostos de Anilina/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Luciferases de Vaga-Lume/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Mutação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Modelos Animais de Doenças
12.
Cancer Res ; 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35700239

RESUMO

Osimertinib is an irreversible third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that was initially developed to overcome the EGFR T790M mutation and is used as a standard therapy in patients with advanced non-small cell lung cancer (NSCLC) with EGFR-activating mutations. Despite the remarkable initial efficacy, osimertinib, like other EGFR-TKIs, is limited by the emergence of acquired resistance. As the EGFR mutation C797S has been identified as a key driver of acquired resistance to osimertinib, development of a drug that targets this clinically relevant mutation could help improve patient outcomes. Here, we report the discovery and preclinical efficacy of OBX02-011, a reversible fourth-generation EGFR TKI that overcomes the EGFR C797S mutation. Compared to approved EGFR TKIs, OBX02-011 showed potent anticancer effects and inhibited EGFR-related signaling in various models, including those harboring the EGFR C797S mutation. Additionally, in transgenic mouse models (EGFRL858R/T790M/C797S), OBX02-011 treatment effectively inhibited tumor growth and EGFR activity, leading to enhanced survival. Collectively, these results suggest that OBX02-011 may be a promising new EGFR TKI to overcome C797S-mediated resistance in NSCLC.

13.
Cancers (Basel) ; 13(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069911

RESUMO

Pgrmc1 is a non-canonical progesterone receptor related to the lethality of various types of cancer. PGRMC1 has been reported to exist in co-precipitated protein complexes with epidermal growth factor receptor (EGFR), which is considered a useful therapeutic target in hepatocellular carcinoma (HCC). Here, we investigated whether Pgrmc1 is involved in HCC progression. In clinical datasets, PGRMC1 transcription level was positively correlated with EGFR levels; importantly, PGRMC1 level was inversely correlated with the survival duration of HCC patients. In a diethylnitrosamine (DEN)-induced murine model of HCC, the global ablation of Pgrmc1 suppressed the development of HCC and prolonged the survival of HCC-bearing mice. We further found that increases in hepatocyte death and suppression of compensatory proliferation in the livers of DEN-injured Pgrmc1-null mice were concomitant with decreases in nuclear factor κB (NF-κB)-dependent production of interleukin-6 (IL-6). Indeed, silencing of Pgrmc1 in murine macrophages led to reductions in NF-κB activity and IL-6 production. We found that the anti-proinflammatory effect of Pgrmc1 loss was mediated by reductions in EGFR level and its effect was not observed after exposure of the EGFR inhibitor erlotinib. This study reveals a novel cooperative role of Pgrmc1 in supporting the EGFR-mediated development of hepatocellular carcinoma, implying that pharmacological suppression of Pgrmc1 may be a useful strategy in HCC treatment.

14.
Metabolomics ; 17(4): 36, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33738589

RESUMO

INTRODUCTION: Chemotherapy is a major etiology of cachexia. Ginseng products are known to have various anti-cachectic and health-promoting effects, such as inhibiting inflammation and promoting energy production. In particular, BST204, purified ginseng dry extract, contains multiple ginsenosides that can reduce chemotherapy-related fatigue and toxicity. OBJECTIVES: To investigate the effects of BST204 on the alleviation of chemotherapy-induced cachexia using a multimodal approach. METHODS: In a CT26 mouse syngeneic colon cancer model, cachexia was predominantly induced by chemotherapy with 5-fluorouracil (5-FU) than by tumor growth. BST204 at a dose of 100 or 200 mg/kg was administered to 5-FU-treated mice. RESULTS: BST204 significantly mitigated the decrease in tumor-excluded body weight (change in 5-FU group and BST204 groups: - 13% vs. - 6% on day 7; - 30% vs. - 20% on day 11), muscle volume (- 19% vs. - 11%), and fat volume (- 91% vs. - 56%). The anti-cachectic effect of BST204 was histologically demonstrated by an improved balance between muscle regeneration and degeneration and a decrease in muscle cross-sectional area reduction. CONCLUSION: Chemotherapy-induced cachexia was biochemically and metabolically characterized by activated inflammation, enhanced oxidative stress, increased protein degradation, decreased protein stabilization, reduced glucose-mediated energy production, and deactivated glucose-mediated biosynthesis. These adverse effects were significantly improved by BST204 treatment. Overall, our multimodal study demonstrated that BST204 could effectively alleviate chemotherapy-induced cachexia.


Assuntos
Caquexia/induzido quimicamente , Caquexia/tratamento farmacológico , Tratamento Farmacológico , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Extratos Vegetais/farmacologia , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/patologia , Modelos Animais de Doenças , Glucose/metabolismo , Inflamação , Interleucina-6/sangue , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos BALB C , Estresse Oxidativo
15.
Radiology ; 299(2): 428-434, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33724064

RESUMO

Background Investigations of amide proton signal changes in the white matter of demyelinating diseases may provide important biophysical information for diagnostic and prognostic assessments. Purpose To evaluate amide proton signals in cuprizone-induced rats using amide proton transfer-weighted (APTw) MRI, which provides in vivo image contrast by changing amide proton concentrations during demyelination (DEM) and subsequent remyelination (REM). Materials and Methods In this animal study, APTw 7-T MRI was performed in 21 male Wistar rats divided into cuprizone-induced (n = 14) and control (n = 7) groups from February to August 2020. The cuprizone-induced group was further subdivided into DEM (n = 7) and REM (n = 7) groups. Seven weeks after cuprizone feeding, rats in the DEM group were killed prior to transmission electron microscopy and myelin staining, while rats in the REM group were changed to a normal chow diet and fed for 5 weeks. In each group, the APTw signals were calculated using a conventional magnetization transfer ratio at 3.5 ppm based on regions of interest in the corpus callosum. Statistical differences in APTw signals among the groups were analyzed with one-way analysis of variance followed by Tukey post hoc tests. Results The mean APTw signals in the control and DEM groups were -4.42% ± 0.60 (standard deviation) (95% CI: -4.98, -3.86) and -2.57% ± 0.48 (95% CI: -3.01, -2.12), respectively, indicating higher in vivo APTw signals in the DEM lesion (P < .001). After REM, mean APTw signal in the REM group was -3.83% ± 0.67 (95% CI: -4.45, -3.22), similar to that in the control group (P = .18) and lower than that in the DEM group (P < .001). Conclusion Significant amide proton transfer-weighted (APTw) metric changes coupled with the histologic characteristics of the demyelination and remyelination processes indicate the potential usefulness of APTw 7-T MRI to monitor earlier myelination processes. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by van Zijl in this issue.


Assuntos
Cuprizona/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Amidas , Animais , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/patologia , Modelos Animais de Doenças , Masculino , Prótons , Ratos , Ratos Wistar , Substância Branca/patologia
16.
J Med Genet ; 58(11): 767-777, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33051312

RESUMO

BACKGROUND: ARID2 belongs to the Switch/sucrose non-fermenting complex, in which the genetic defects have been found in patients with dysmorphism, short stature and intellectual disability (ID). As the phenotypes of patients with ARID2 mutations partially overlap with those of RASopathy, this study evaluated the biochemical association between ARID2 and RAS-MAPK pathway. METHODS: The phenotypes of 22 patients with either an ARID2 heterozygous mutation or haploinsufficiency were reviewed. Comprehensive molecular analyses were performed using somatic and induced pluripotent stem cells (iPSCs) of a patient with ARID2 haploinsufficiency as well as using the mouse model of Arid2 haploinsufficiency by CRISPR/Cas9 gene editing. RESULTS: The phenotypic characteristics of ARID2 deficiency include RASopathy, Coffin-Lowy syndrome or Coffin-Siris syndrome or undefined syndromic ID. Transient ARID2 knockout HeLa cells using an shRNA increased ERK1 and ERK2 phosphorylation. Impaired neuronal differentiation with enhanced RAS-MAPK activity was observed in patient-iPSCs. In addition, Arid2 haploinsufficient mice exhibited reduced body size and learning/memory deficit. ARID2 haploinsufficiency was associated with reduced IFITM1 expression, which interacts with caveolin-1 (CAV-1) and inhibits ERK activation. DISCUSSION: ARID2 haploinsufficiency is associated with enhanced RAS-MAPK activity, leading to reduced IFITM1 and CAV-1 expression, thereby increasing ERK activity. This altered interaction might lead to abnormal neuronal development and a short stature.


Assuntos
Nanismo/genética , Deficiência Intelectual/genética , Sistema de Sinalização das MAP Quinases/fisiologia , Fatores de Transcrição/genética , Anormalidades Múltiplas/etiologia , Animais , Antígenos de Diferenciação/genética , Antígenos de Diferenciação/metabolismo , Encéfalo/anormalidades , Encéfalo/fisiopatologia , Caveolina 1/genética , Caveolina 1/metabolismo , Criança , Pré-Escolar , Face/anormalidades , Feminino , Deformidades Congênitas da Mão/etiologia , Haploinsuficiência , Heterozigoto , Humanos , Deficiência Intelectual/etiologia , Masculino , Camundongos Knockout , Micrognatismo/etiologia , Mutação , Pescoço/anormalidades , Fatores de Transcrição/metabolismo , Adulto Jovem , Proteínas ras/genética , Proteínas ras/metabolismo
17.
Ultrasonography ; 40(1): 126-135, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32580267

RESUMO

PURPOSE: This study evaluated the test-retest repeatability and measurement variability of ultrasonographic shear wave elastography (SWE) for liver stiffness in a rat liver fibrosis model. METHODS: In 31 Sprague-Dawley rats divided into three groups (high-dose, low-dose, and control), liver fibrosis was induced by intraperitoneal administration of thioacetamide for 8 weeks. A dedicated radiographer performed SWE to measure liver stiffness in kilopascals in two sessions at a 3-day interval. We calculated correlations between liver stiffness and histopathologic results, measurement variability in each session using coefficients of variation (CoVs) and interquartile/median (IQR/M), and test-retest repeatability between both sessions using the repeatability coefficient. RESULTS: Different levels of liver fibrosis in each group were successfully induced in the animal model. The mean liver stiffness values were 8.88±1.48 kPa in the control group, 11.62±1.70 kPa in the low-dose group, and 11.91±1.73 kPa in the high-dose group. The correlation between collagen areas and liver stiffness values was moderate (r=0.6). In all groups, the second session yielded lower CoVs (i.e., more reliable results) for liver stiffness than the first session, suggesting a training effect for the operator. The mean IQR/M values were also lower in the second session than in the first session, which had four outliers (0.21 vs. 0.12, P<0.001). The test-retest repeatability coefficient was 3.75 kPa and decreased to 2.82 kPa after removing the four outliers. CONCLUSION: The use of ultrasonographic SWE was confirmed to be feasible and repeatable for evaluating liver fibrosis in preclinical trials. Operator training might reduce variability in liver stiffness measurements.

18.
Int J Mol Sci ; 21(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322784

RESUMO

BACKGROUND: Glutamate-weighted chemical exchange saturation transfer (GluCEST) is a useful imaging tool that can be used to detect changes in glutamate levels in vivo and could also be helpful in the diagnosis of brain myelin changes. We investigated glutamate level changes in the cerebral white matter of a rat model of cuprizone-administered demyelination and remyelination using GluCEST. METHOD: We used a 7 T pre-clinical magnetic resonance imaging (MRI) system. The rats were divided into the normal control (CTRL), cuprizone-administered demyelination (CPZDM), and remyelination (CPZRM) groups. GluCEST data were analyzed using the conventional magnetization transfer ratio asymmetry in the corpus callosum. Immunohistochemistry and transmission electron microscopy analyses were also performed to investigate the myelinated axon changes in each group. RESULTS: The quantified GluCEST signals differed significantly between the CPZDM and CTRL groups (-7.25 ± 1.42% vs. -2.84 ± 1.30%; p = 0.001). The increased GluCEST signals in the CPZDM group decreased after remyelination (-6.52 ± 1.95% in CPZRM) to levels that did not differ significantly from those in the CTRL group (p = 0.734). CONCLUSION: The apparent temporal signal changes in GluCEST imaging during demyelination and remyelination demonstrated the potential usefulness of GluCEST imaging as a tool to monitor the myelination process.


Assuntos
Axônios/metabolismo , Corpo Caloso/metabolismo , Doenças Desmielinizantes/metabolismo , Ácido Glutâmico/metabolismo , Remielinização , Administração Oral , Animais , Axônios/ultraestrutura , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/ultraestrutura , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/efeitos dos fármacos , Corpo Caloso/ultraestrutura , Cuprizona/administração & dosagem , Cuprizona/toxicidade , Modelos Animais de Doenças , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Microscopia Eletrônica de Transmissão , Bainha de Mielina/metabolismo , Bainha de Mielina/patologia , Ratos , Ratos Sprague-Dawley
19.
Int J Hyperthermia ; 37(1): 1287-1292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33198552

RESUMO

PURPOSE: To evaluate whether the additive needle tract ablation (TA) can reduce adherent cells on the needle tract after radiofrequency ablation (RFA) in a preclinical HCC mouse model. METHODS: Hep3B-Luc cells were engrafted in the Balb/c-nude mice. Nineteen mice were randomly assigned into three groups: the needle only group (needle placement only without performing RFA), the RFA only group (needle placement with active RFA treatment), and the RFA-TA group (needle placement with active RFA treatment and additive tract ablation). The 17-gauge needle with a 10-mm active tip was used. After RFA and TA, the viability of adherent tumor cells on the RFA needle was evaluated with bioluminescence imaging (BLI) and live-cell counting. RESULTS: We observed that RFA-TA group had the lowest BLI values compared with other groups (needle only group, 11.2 ± 6.4 million; RFA only group, 13.6 ± 9.1 million; RFA-TA group, 1.11 ± 0.8 million, p = 0.001). Live cell counting with acridine orange/propidium iodide staining also confirmed that the counted viable cell numbers in RFA-TA group were lowest compared to the other groups (needle only group, 14.8 ± 4.5; RFA only group, 643.8 ± 131.9; RFA-TA group, 1.5 ± 0.9, p < 0.001). CONCLUSIONS: The additive tract ablation can significantly reduce the number of viable tumor cells adherent to the RFA needle, which can prevent needle tract seeding after RFA procedure.


Assuntos
Carcinoma Hepatocelular , Ablação por Cateter , Neoplasias Hepáticas , Ablação por Radiofrequência , Animais , Carcinoma Hepatocelular/cirurgia , Adesão Celular , Eletrodos , Neoplasias Hepáticas/cirurgia , Camundongos , Camundongos Nus
20.
Sci Rep ; 10(1): 14906, 2020 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-32913241

RESUMO

Aryl hydrocarbon receptor (AhR) antagonism can mitigate cellular damage associated with cerebral ischaemia and reperfusion (I/R) injury. This study investigated the neuroprotective effects of AhR antagonist administration before reperfusion in a rat stroke model and influence of the timing of AhR antagonist administration on its neuroprotective effects. Magnetic resonance imaging (MRI) was performed at baseline, immediately after, and 3, 8, and 24 h after ischaemia in the sham, control (I/R injury), TMF10 (trimethoxyflavone [TMF] administered 10 min post-ischaemia), and TMF50 (TMF administered 50 min post-ischaemia) groups. The TMF treatment groups had significantly fewer infarcts than the control group. At 24 h, the relative apparent diffusion coefficient values of the ischaemic core and peri-infarct region were significantly higher and relative T2 values were significantly lower in the TMF10 groups than in the control group. The TMF treatment groups showed significantly fewer terminal deoxynucleotidyl transferase dUTP nick-end labelling positive (+) cells (%) in the peri-infarct region than the control group. This study demonstrated that TMF treatment 10 or 50 min after ischaemia alleviated brain damage. Furthermore, the timing of AhR antagonist administration affected the inhibition of cellular or vasogenic oedema formation caused by a transient ischaemic stroke.


Assuntos
Isquemia Encefálica/prevenção & controle , Lactamas/farmacologia , Mupirocina/análogos & derivados , Fármacos Neuroprotetores/farmacologia , Receptores de Hidrocarboneto Arílico/antagonistas & inibidores , Traumatismo por Reperfusão/prevenção & controle , Animais , Apoptose , Isquemia Encefálica/etiologia , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Masculino , Mupirocina/farmacologia , Ratos , Ratos Sprague-Dawley , Reperfusão , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA