Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 12(1): 2306, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33863905

RESUMO

Novel effects induced by nonmagnetic impurities in frustrated magnets and quantum spin liquid represent a highly nontrivial and interesting problem. A theoretical proposal of extended modulated spin structures induced by doping of such magnets, distinct from the well-known skyrmions has attracted significant interest. Here, we demonstrate that nonmagnetic impurities can produce such extended spin structures in h-YMnO3, a triangular antiferromagnet with noncollinear magnetic order. Using inelastic neutron scattering (INS), we measured the full dynamical structure factor in Al-doped h-YMnO3 and confirmed the presence of magnon damping with a clear momentum dependence. Our theoretical calculations can reproduce the key features of the INS data, supporting the formation of the proposed spin textures. As such, our study provides the first experimental confirmation of the impurity-induced spin textures. It offers new insights and understanding of the impurity effects in a broad class of noncollinear magnetic systems.

2.
Nat Commun ; 7: 13146, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27759004

RESUMO

Magnons and phonons are fundamental quasiparticles in a solid and can be coupled together to form a hybrid quasi-particle. However, detailed experimental studies on the underlying Hamiltonian of this particle are rare for actual materials. Moreover, the anharmonicity of such magnetoelastic excitations remains largely unexplored, although it is essential for a proper understanding of their diverse thermodynamic behaviour and intrinsic zero-temperature decay. Here we show that in non-collinear antiferromagnets, a strong magnon-phonon coupling can significantly enhance the anharmonicity, resulting in the creation of magnetoelastic excitations and their spontaneous decay. By measuring the spin waves over the full Brillouin zone and carrying out anharmonic spin wave calculations using a Hamiltonian with an explicit magnon-phonon coupling, we have identified a hybrid magnetoelastic mode in (Y,Lu)MnO3 and quantified its decay rate and the exchange-striction coupling term required to produce it.

3.
Phys Rev Lett ; 111(25): 257202, 2013 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-24483753

RESUMO

The breakdown of magnons, the quasiparticles of magnetic systems, has rarely been seen. By using an inelastic neutron scattering technique, we report the observation of spontaneous magnon decay in multiferroic LuMnO3, a simple two dimensional Heisenberg triangular lattice antiferromagnet, with large spin S=2. The origin of this rare phenomenon lies in the nonvanishing cubic interaction between magnons in the spin Hamiltonian arising from the noncollinear 120° spin structure. We observed all three key features of the nonlinear effects as theoretically predicted: a rotonlike minimum, a flat mode, and a linewidth broadening, in our inelastic neutron scattering measurements of single crystal LuMnO3. Our results show that quasiparticles in a system hitherto thought of as "classical" can indeed break down.

4.
Phys Rev Lett ; 96(15): 157001, 2006 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-16712186

RESUMO

We use high-resolution inelastic neutron scattering to study the low-temperature magnetic excitations of the electron-doping superconductor Pr(0.88)LaCe(0.12)CuO(4-delta) (T(c) = 21 +/- 1 K) over a wide energy range (4 meV < or = homega < or = 330 meV). The effect of electron doping is to cause a wave vector (Q) broadening in the low-energy (homega < or = 80 meV) commensurate spin fluctuations at (0.5, 0.5) and to suppress the intensity of spin-wave-like excitations at high energies (homega > or = 100 meV). This leads to a substantial redistribution in the spectrum of the local dynamical spin susceptibility chi''(omega), and reveals a new energy scale similar to that of the lightly hole-doped YB2Cu3O(6.353) (T(c) = 18 K).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA