RESUMO
Dissolved organic carbon (DOC) is a complex mixture of molecules that varies in composition based on origin as well as spatial and temporal factors. DOC is an important water quality parameter as it regulates many biological processes in freshwater systems, including the physiological function of the gills in fish. These effects are often beneficial, especially at low pH where DOCs mitigate ion loss and protect active ion uptake. DOCs of different compositions and quality have varied ionoregulatory effects. The molecular variability of DOCs can be characterized using optical and chemical indices, but how these indices relate to the physiological effects exerted by DOCs is not well understood. We tested the effects of five naturally sourced DOCs, at both pH 7 and pH 4, on transepithelial potential (TEP) (a diffusion potential between the blood plasma and the external water) in rainbow trout. The five chosen DOCs have been well characterized and span large differences in physicochemical characteristics. Each of the DOCs significantly influenced TEP, although in a unique manner or magnitude which was likely due to their physicochemical characteristics. These TEP responses were also a function of pH. With the goal of determining which physicochemical indices are predictive of changes in TEP, we evaluated correlations between various indices and TEP at pH 7 and pH 4. The indices included: specific absorbance coefficient at 340 nm, molecular weight index, fluorescence index, octanol-water partition coefficient, molecular charge, proton binding index, % humic acid-like, % fulvic acid-like, and % protein-like components by parallel factor analysis on fluorescence data (PARAFAC). Our results demonstrate the novel finding that there are three particularly important indices that are predictors of changes in TEP across pHs in rainbow trout: specific absorbance coefficient at 340 nm, octanol-water partition coefficient; and proton binding index.
RESUMO
To date, the majority of in vitro or ex vivo fish gastrointestinal research has been conducted under unrealistic conditions. In a living fish, ionic conditions, as well as levels of ammonia, pH, HCO3- and PCO2 differ considerably between the different regions of the gastrointestinal tract. These factors also differ from those of the saline often used in gut research. Furthermore, the oxygen gradient from the serosa to the gut lumen is rarely considered: in contrast to the serosa, the lumen is a hypoxic/anoxic environment. In addition, the gut microbiome plays a significant role in gut physiology, increasing the complexity of the in vivo gut, but replicating the microbial community for in vitro studies is exceptionally difficult. However, there are ways in which we can begin to overcome these challenges. Firstly, the luminal chemistry and PO2 in each gut compartment must be carefully considered. Secondly, although microbiological culture techniques are improving, we must learn how to maintain the microbiome diversity seen in vivo. Finally, for ex vivo studies, developing mucosal (luminal) solutions that more closely mimic the in vivo conditions will better replicate physiological processes. Within the field of mammalian gut physiology, great advances in 'gut-on-chip' devices are providing the tools to better replicate in vivo conditions; adopting and adapting this technology may assist in fish gut research initiatives. This Commentary aims to make fish gut physiologists aware of the various issues in replicating the in vivo conditions and identifies solutions as well as those areas that require further improvement.
Assuntos
Peixes , Trato Gastrointestinal , Animais , Trato Gastrointestinal/microbiologia , Trato Gastrointestinal/fisiologia , Peixes/fisiologia , Peixes/microbiologia , Microbioma Gastrointestinal/fisiologiaRESUMO
Many flatfish species are partially euryhaline, such as the Pacific sanddab which spawn and feed in highly dynamic estuaries ranging from seawater to near freshwater. With the rapid increase in saltwater invasion of freshwater habitats, it is very likely that in these estuaries, flatfish will be exposed to increasing levels of dissolved organic carbon (DOC) of freshwater origin at a range of salinities. As salinity fluctuations often coincide with changes in DOC concentration, two natural freshwater DOCs [Luther Marsh (LM, allochthonous) and Lake Ontario (LO, autochthonous) were investigated at salinities of 30 and 7.5 ppt. Optical characterization of the two natural DOC sources indicate salinity-dependent differences in their physicochemistry. LO and LM DOCs, as well as three model compounds [tannic acid (TA), sodium dodecyl sulfate (SDS) and bovine serum albumin (BSA)] representing key chemical moieties of DOC, were used to evaluate physiological effects on sanddabs. In the absence of added DOC, an acute decrease in salinity resulted in an increase in diffusive water flux (a proxy for transcellular water permeability), ammonia excretion and a change in TEP from positive (inside) to negative (inside). The effects of DOC (10 mg C L-1) were salinity and source-dependent, with generally more pronounced effects at 30 than 7.5 ppt, and greater potency of LM relative to LO. Both LM DOC and SDS increased diffusive water flux at 30 ppt but only SDS had an effect at 7.5 ppt. TA decreased ammonia excretion at 7.5 ppt. LO DOC decreased urea-N excretion at both salinities whereas the stimulatory effect of BSA occurred only at 30 ppt. Likewise, the effects of LM DOC and BSA to reduce TEP were present at 30 ppt but not 7.5 ppt. None of the treatments affected oxygen consumption rates. Our results demonstrate that DOCs and salinity interact to alter key physiological processes in marine flatfish, reflecting changes in both gill function and the physicochemistry of DOCs between 30 and 7.5 ppt.
Assuntos
Carbono , Brânquias , Consumo de Oxigênio , Salinidade , Animais , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Carbono/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Água Doce/químicaRESUMO
There is a consensus that electroneutral Na+/H+ exchangers (NHEs) are important in branchial Na+ uptake in freshwater fish. There is also widespread belief, based on mammalian data, that EIPA [5-(N-ethyl-N-isopropyl)-amiloride]], and HMA [5-(N,N-hexamethylene)-amiloride)] are more potent and specific in blocking Na+ uptake than amiloride. We evaluated this idea by testing the three drugs at 10-7 to 10-4 M, i.e. 0.1 to 100 µM in two model species, rainbow trout (Oncorhynchus mykiss) and goldfish (Carassius auratus), using 22Na+ to measure unidirectional Na+ influx and efflux rates. In both species, the potency order for inhibiting unidirectional Na+ influx was HMA > amiloride > EIPA (IC50 values in the 10-70 µM range), very different from in mammals. At 100 µM, all three drugs inhibited Na+ influx by >90% in both species, except for amiloride in goldfish (65%). However, at 60-100 µM, all three drugs also stimulated unidirectional Na+ efflux rates, indicating non-specific effects. In trout, HMA and EIPA caused significant increases (2.1- to 2.3-fold) in efflux rates, whereas in goldfish, significant efflux elevations were greater (3.1- to 7.2-fold) with all three drugs. We conclude that the inhibitory potency profile established in mammals does not apply to the NHEs in fish gills, that non-specific effects on Na+ efflux rates are a serious concern, and that EIPA and HMA offer no clear benefits in terms of potency or specificity. Considering its much lower cost, we recommend amiloride as the drug of choice for in vivo experiments on freshwater fishes.
Assuntos
Amilorida , Carpa Dourada , Sódio , Animais , Amilorida/farmacologia , Amilorida/análogos & derivados , Carpa Dourada/metabolismo , Sódio/metabolismo , Brânquias/metabolismo , Brânquias/efeitos dos fármacos , Oncorhynchus mykiss/metabolismo , Água Doce , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Transporte de Íons/efeitos dos fármacos , Truta/metabolismoRESUMO
Pacific spiny dogfish, Squalus suckleyi, move to shallow coastal waters during critical reproductive life stages and are thus at risk of encountering hypoxic events which occur more frequently in these areas. For effective conservation management, we need to fully understand the consequences of hypoxia on marine key species such as elasmobranchs. Because of their benthic life style, we hypothesized that S. suckleyi are hypoxia tolerant and able to efficiently regulate oxygen consumption, and that anaerobic metabolism is supported by a broad range of metabolites including ketones, fatty acids and amino acids. Therefore, we studied oxygen consumption rates, ventilation frequency and amplitude, blood gasses, acid-base regulation, and changes in plasma and tissue metabolites during progressive hypoxia. Our results show that critical oxygen levels (P crit) where oxyregulation is lost were indeed low (18.1% air saturation or 28.5 Torr at 13°C). However, many dogfish behaved as oxyconformers rather than oxyregulators. Arterial blood PO2 levels mostly decreased linearly with decreasing environmental PO2. Blood gases and acid-base status were dependent on open versus closed respirometry but in both set-ups ventilation frequency increased. Hypoxia below Pcrit resulted in an up-regulation of anaerobic glycolysis, as evidenced by increased lactate levels in all tissues except brain. Elasmobranchs typically rely on ketone bodies as oxidative substrates, and decreased concentrations of acetoacetate and ß-hydroxybutyrate were observed in white muscle of hypoxic and/or recovering fish. Furthermore, reductions in isoleucine, glutamate, glutamine and other amino acids were observed. After 6 hours of normoxic recovery, changes persisted and only lactate returned to normal in most tissues. This emphasizes the importance of using suitable bioindicators adjusted to preferred metabolic pathways of the target species in conservation physiology. We conclude that Pacific spiny dogfish can tolerate severe transient hypoxic events, but recovery is slow and negative impacts can be expected when hypoxia persists.
RESUMO
The role of the carapace in the uptake and storage of newly accumulated metals was investigated in the green crab exposed to environmentally relevant concentrations of calcium ([Ca] = 389 mg L-1 or 9.7 mmol L-1), zinc ([Zn] = 82 µg L-1 or 1.25 µmol L-1), and nickel ([Ni] = 8.2 µg L-1 or 0.14 µmol L-1) in 12 °C seawater, using radio-tracers (45Ca, 65Zn, 63Ni). After 24-h exposure, carapace exhibited the highest concentration of newly accumulated Ca, whereas carapace and gills exhibited the highest concentrations of both newly accumulated Zn and Ni relative to other tissues. For all three metals, the carapace accounted for >85 % of the total body burden. Acute temperature changes (to 2 °C and 22 °C) revealed the highest overall temperature coefficient Q10 (2.15) for Ca uptake into the carapace, intermediate Q10 for Ni (1.87) and lowest Q10 (1.45) for Zn. New Ca uptake into the carapace continued linearly with time for 24 h, new Zn uptake gradually deviated from linearity, whereas Ni uptake reached a plateau by 6 h. Attachment of a rubber membrane to the dorsal carapace, thereby shielding about 20 % of the total crab surface area from the external water, eliminated both new Zn and Ni incorporation into the shielded carapace, whereas 36 % of new Ca incorporation persisted. When recently euthanized crabs were exposed, new Zn uptake into the carapace remained unchanged, whereas Ca and Ni uptake were reduced by 89 % and 71 %, respectively. We conclude that the carapace is a very important uptake and storage site for all three metals. All of the uptake of new Zn and new Ni, and most of the uptake of new Ca into this tissue comes directly from the external water. For Zn, the mechanism involves only physicochemical processes, whereas for Ca and Ni, life-dependent processes make the major contribution.
Assuntos
Braquiúros , Cálcio , Níquel , Água do Mar , Poluentes Químicos da Água , Zinco , Animais , Braquiúros/metabolismo , Níquel/metabolismo , Zinco/metabolismo , Poluentes Químicos da Água/metabolismo , Água do Mar/química , Cálcio/metabolismo , Exoesqueleto/química , Exoesqueleto/metabolismo , Monitoramento AmbientalRESUMO
From review of the very few topical studies to date, we conclude that while effects are variable, microplastics can induce direct ionoregulatory disturbances in freshwater fish and invertebrates. However, the intensity depends on microplastic type, size, concentration, and exposure regime. More numerous are studies where indirect inferences about possible ionoregulatory effects can be drawn; these indicate increased mucus production, altered breathing, histopathological effects on gill structure, oxidative stress, and alterations in molecular pathways. All of these could have negative effects on ionoregulatory homeostasis. However, previous research has suffered from a lack of standardized reporting of microplastic characteristics and exposure conditions. Often overlooked is the fact that microplastics are dynamic contaminants, changing over time through degradation and fragmentation and subsequently exhibiting altered surface chemistry, notably an increased presence and diversity of functional groups. The same functional groups characterized on microplastics are also present in dissolved organic matter, often termed dissolved organic carbon (DOC), a class of substances for which we have a far greater understanding of their ionoregulatory actions. We highlight instances in which the effects of microplastic exposure resemble those of DOC exposure. We propose that in future microplastic investigations, in vivo techniques that have proven useful in understanding the ionoregulatory effects of DOC should be used including measurements of transepithelial potential, net and unidirectional radio-isotopic ion flux rates, and concentration kinetic analyses of uptake transport. More sophisticated in vitro approaches using cultured gill epithelia, Ussing chamber experiments on gill surrogate membranes, and scanning ion selective electrode techniques (SIET) may also prove useful. Finally, in future studies we advocate for minimum reporting requirements of microplastic properties and experimental conditions to help advance this important emerging field.
Assuntos
Peixes , Água Doce , Brânquias , Invertebrados , Microplásticos , Poluentes Químicos da Água , Animais , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Microplásticos/toxicidade , Peixes/fisiologia , Peixes/metabolismo , Poluentes Químicos da Água/toxicidade , Invertebrados/efeitos dos fármacos , Invertebrados/fisiologiaRESUMO
The physiological processes underlying the post-prandial rise in metabolic rate, most commonly known as the 'specific dynamic action' (SDA), remain debated and controversial. This Commentary examines the SDA response from two opposing hypotheses: (i) the classic interpretation, where the SDA represents the energy cost of digestion, versus (ii) the alternative view that much of the SDA represents the energy cost of growth. The traditional viewpoint implies that individuals with a reduced SDA should grow faster given the same caloric intake, but experimental evidence for this effect remains scarce and inconclusive. Alternatively, we suggest that the SDA reflects an organism's efficacy in allocating the ingested food to growth, emphasising the role of post-absorptive processes, particularly protein synthesis. Although both viewpoints recognise the trade-offs in energy allocation and the dynamic nature of energy distribution among physiological processes, we argue that equating the SDA with 'the energy cost of digestion' oversimplifies the complexities of energy use in relation to the SDA and growth. In many instances, a reduced SDA may reflect diminished nutrient absorption (e.g. due to lower digestive efficiency) rather than increased 'free' energy available for somatic growth. Considering these perspectives, we summarise evidence both for and against the opposing hypotheses with a focus on ectothermic vertebrates. We conclude by presenting a number of future directions for experiments that may clarify what the SDA is, and what it is not.
Assuntos
Ingestão de Energia , Período Pós-Prandial , Humanos , Animais , Período Pós-Prandial/fisiologia , Consumo de Oxigênio , Digestão/fisiologia , Metabolismo Energético/fisiologiaRESUMO
The Rio Negro basin of Amazonia (Brazil) is a hotspot of fish biodiversity that is under threat from copper (Cu) pollution. The very ion-poor blackwaters have a high dissolved organic carbon (DOC) concentration. We investigated the Cu sensitivity of nine Amazonian fish species in their natural blackwaters (Rio Negro). The acute lethal concentration of Cu (96 h LC50) was determined at different dilutions of Rio Negro water (RNW) in ion-poor well water (IPW), ranging from 0 to 100%. The IPW was similar to RNW in pH and ionic composition but deficient in DOC, allowing this parameter to vary 20-fold from 0.4 to 8.3 mg/L in tests. The Biotic Ligand Model (BLM; Windward version 3.41.2.45) was used to model Cu speciation and toxicity over the range of tested water compositions, and to estimate lethal Cu accumulations on the gills (LA50). The modeling predicted a high relative abundance of Cu complexes with DOC in test waters. As these complexes became more abundant with increasing RNW content, a concomitant decrease in free Cu2+ was observed. In agreement with this modeling, acute Cu toxicity decreased (i.e. 96 h LC50 values increase) with increasing RNW content. The three most sensitive species (Hemigrammus rhodostomus, Carnegiella strigatta and Hyphessobrycon socolofi) were Characiformes, whereas Corydoras schwartzi (Siluriformes) and Apistogramma agassizii (Cichliformes) were the most tolerant. These sensitivity differences were reflected in the BLM-predicted lethal gill copper accumulation (LA50), which were generally lower in Characiformes than in Cichliformes. Using these newly estimated LA50 values in the BLM allowed for accurate prediction of acute Cu toxicity in the nine Amazonian fish. Our data emphasize that the BLM approach is a promising tool for assessing Cu risk to Amazonian fish species in blackwater conditions characterized by very low concentrations of major ions but high concentrations of DOC.
Assuntos
Characidae , Poluentes Químicos da Água , Animais , Cobre/toxicidade , Cobre/análise , Ligantes , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Água/química , ÍonsRESUMO
A new "less invasive" device incorporating an ultrasonic flow probe and a divided chamber, but no stitching of membranes to the fish, was employed to make the first direct measurements of ventilatory flow rate (VÌw) and % O2 utilization (%U) in juvenile rainbow trout (37 g, 8ºC) after exhaustive exercise (10-min chasing) and voluntary feeding (2.72% body mass ration). Under resting conditions, the allometrically scaled VÌw (300 ml kg-1 min-1 for a 37-g trout = 147 ml kg-1 min-1 for a 236-g trout exhibiting the same mass-specific O2 consumption rate, MO2) and the convection requirement for O2 (CR = 4.13 L mmol-1) were considerably lower, and the %U (67%) was considerably higher than in previous studies using surgically attached masks or the Fick principle. After exhaustive exercise, VÌw and MO2 approximately doubled whereas frequency (fr) and %U barely changed, so increased ventilatory stroke volume (Vsv) was the most important contributor to increased MO2. CR declined slightly. Values gradually returned to control conditions after 2-3 h. After voluntary feeding, short-term increases in VÌw, Vsv and MO2 were comparable to those after exercise, and fr again did not change. However, %U increased so CR declined even more. The initial peaks in VÌw, Vsv and MO2, similar to those after exercise, were likely influenced by the excitement and exercise component of voluntary feeding. However, in contrast to post-exercise fish, post-prandial fish exhibited second peaks in these same parameters at 1-3 h after feeding, and %U increased further, surpassing 85%, reflecting the true "specific dynamic action" response. We conclude that respiration in trout is much more efficient than previously believed.
Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/fisiologia , Oxigênio , Respiração , Consumo de Oxigênio/fisiologiaRESUMO
Little information exists on physiological consequences when wild fish eat natural food. Staghorn sculpins at 10-13°C voluntarily consumed 15.8% of their body mass in anchovies. Gastric clearance was slow with >60% of the meal retained in the stomach at 48â h, and was not complete until 84â h. At 14-24â h post-feeding, pH was depressed by 3 units and Cl- concentration was elevated 2-fold in gastric chyme, reflecting HCl secretion, while in all sections of the intestine, pH declined by 1â pH unit but Cl- concentration remained unchanged. PCO2 and total ammonia concentration were greatly elevated throughout the tract, whereas PNH3 and HCO3- concentration were depressed. Intestinal HCO3- secretion rates, measured in gut sacs in vitro, were also lower in fed fish. Whole-animal O2 consumption rate was elevated approximately 2-fold for 72â h post-feeding, reflecting 'specific dynamic action', whereas ammonia and urea-N excretion rates were elevated about 5-fold. Arterial blood exhibited a modest 'alkaline tide' for about 48â h, but there was negligible excretion of metabolic base to the external seawater. PaCO2 and PaO2 remained unchanged. Plasma total amino acid concentration and total lipid concentration were elevated about 1.5-fold for at least 48â h, whereas small increases in plasma total ammonia concentration, PNH3 and urea-N concentration were quickly attenuated. Plasma glucose concentration remained unchanged. We conclude that despite the very large meal, slow processing with high efficiency minimizes internal physiological disturbances. This differs greatly from the picture provided by previous studies on aquacultured species using synthetic diets and/or force-feeding. Questions remain about the role of the gastro-intestinal microbiome in nitrogen and acid-base metabolism.
Assuntos
Equilíbrio Ácido-Base , Perciformes , Animais , Equilíbrio Ácido-Base/fisiologia , Amônia/metabolismo , Peixes/metabolismo , Perciformes/metabolismo , UreiaRESUMO
In nature, mosshead sculpins (Clinocottus globiceps) are challenged by fluctuations in temperature and oxygen levels in their environment. However, it is unclear how mosshead sculpins modulate the permeability of their branchial epithelia to water and O2 in response to temperature or hypoxia stress. Acute decrease in temperature from 13 to 6 oC reduced diffusive water flux rate by 22% and MO2 by 51%, whereas acute increase in temperature from 13 to 25 oC increased diffusive water flux rate by 217% and MO2 by 140%, yielding overall Q10 values of 2.08 and 2.47 respectively. Acute reductions in oxygen tension from >95% to 20% or 10% air saturation did not impact diffusive water flux rates, however, MO2 was reduced significantly by 36% and 65% respectively. During 1-h or 3-h recovery periods diffusive water flux rates were depressed while MO2 exhibited overshoots beyond the normoxic control level. Many responses differed from those seen in our parallel earlier study on the tidepool sculpin, a cottid with similar hypoxia tolerance but much smaller gill area that occupies a similar environment. Overall, our data suggest that during temperature stress, diffusive water flux rates and MO2 follow the traditional osmo-respiratory compromise pattern, but during hypoxia and re-oxygenation stress, diffusive water flux rates are decoupled from MO2.
Assuntos
Perciformes , Água , Animais , Consumo de Oxigênio/fisiologia , Temperatura , Hipóxia , OxigênioRESUMO
Maintaining normal pH levels in the body fluids is essential for homeostasis and represents one of the most tightly regulated physiological processes among vertebrates. Fish are generally ammoniotelic and inhabit diverse aquatic environments that present many respiratory, acidifying, alkalinizing, ionic and osmotic stressors to which they are able to adapt. They have evolved flexible strategies for the regulation of acid-base equivalents (H+, NH4 +, OH- and HCO3 -), ammonia and phosphate to cope with these stressors. The gills are the main regulatory organ, while the kidneys play an important, often overlooked accessory role in acid-base regulation. Here we outline the kidneys role in regulation of acid-base equivalents and two of the key 'urinary buffers', ammonia and phosphate, by integrating known aspects of renal physiology with recent advances in the molecular and cellular physiology of membrane transport systems in the teleost kidneys. The renal transporters (NHE3, NBC1, AE1, SLC26A6) and enzymes (V-type H+ATPase, CAc, CA IV, ammoniagenic enzymes) involved in H+ secretion, bicarbonate reabsorption, and the net excretion of acidic and basic equivalents, ammonia, and inorganic phosphate are addressed. The role of sodium-phosphate cotransporter (Slc34a2b) and rhesus (Rh) glycoproteins (ammonia channels) in conjunction with apical V-type H+ ATPase and NHE3 exchangers in these processes are also explored. Nephrocalcinosis is an inflammation-like disorder due to the precipitation of calcareous material in the kidneys, and is listed as one of the most prevalent pathologies in land-based production of salmonids in recirculating aquaculture systems. The causative links underlying the pathogenesis and etiology of nephrocalcinosis in teleosts is speculative at best, but acid-base perturbation is probably a central pathophysiological cause. Relevant risk factors associated with nephrocalcinosis are hypercapnia and hyperoxia in the culture water. These raise internal CO2 levels in the fish, triggering complex branchial and renal acid-base compensations which may promote formation of kidney stones. However, increased salt loads through the rearing water and the feed may increase the prevalence of nephrocalcinosis. An increased understanding of the kidneys role in acid-base and ion regulation and how this relates to renal diseases such as nephrocalcinosis will have applied relevance for the biologist and aquaculturist alike.
RESUMO
The green crab (Carcinus maenas) is an inshore species affected by intertidal zonation patterns, facing periods of emersion during low tide and submersion during high tide. During these periods of air and subsequent water exposure, these species can face physiological challenges. We examined changes in O2 consumption rate (MO2), and ammonia and urea excretion rates over sequential 14â h periods in seawater (32â ppt, control), in air and during recovery in seawater after air exposure (13°C throughout). At the end of each exposure, the anterior (5th) and posterior (8th) gills and the hepatopancreas were removed for measurements of oxidative stress parameters (TBARs and catalase in the gills and hepatopancreas, and protein carbonyls in the gills). MO2 remained unchanged during air exposure, but increased greatly (3.4-fold above control levels) during the recovery period. Ammonia and urea net fluxes were reduced by 98% during air exposure, but rebounded during recovery to >2-fold the control rates. Exchangeable water pools, rate constants of diffusive water exchange, unidirectional diffusive water flux rates (using tritiated water) and transepithelial potential were also measured during control and recovery treatments, but exhibited no significant changes. Damage to proteins was not observed in either gill. However, lipid damage occurred in the anterior (respiratory) gill after the air exposure but not in the posterior (ionoregulatory) gill or hepatopancreas. Catalase activity also decreased significantly in recovery relative to levels during air exposure in both the anterior gill and hepatopancreas, but not in the posterior gill. The crabs did not modify water metabolism or permeability. We conclude that MO2 was maintained but not enhanced during air exposure, while ammonia and urea-N excretion were impaired. As a result, all of these parameters increase greatly during re-immersion recovery, and oxidative stress also occurs. Clearly, emersion is not without physiological costs.
Assuntos
Braquiúros , Água , Animais , Água/metabolismo , Braquiúros/fisiologia , Catalase/metabolismo , Amônia/metabolismo , Ureia/metabolismo , Consumo de Oxigênio/fisiologia , Estresse Oxidativo , Brânquias/metabolismoRESUMO
The gastrointestinal tract (GIT) lumen of teleosts harbors extreme conditions, especially after feeding: high PCO2 (20-115 Torr), total ammonia (415-3710 µM), PNH3 (79-1760 µTorr in the intestine), and virtual anoxia (PO2 < 1 Torr). These levels could be dangerous if they were to equilibrate with the bloodstream. Thus, we investigated the potential equilibration of O2, CO2, and ammonia across the GIT epithelia in freshwater rainbow trout by monitoring postprandial arterial and venous blood gases in vivo and in situ. In vivo blood was sampled from the indwelling catheters in the dorsal aorta (DA) and subintestinal vein (SIV) draining the posterior intestine in the fasting state and at 4 to 48 h following catheter-feeding. To investigate possible ammonia absorption in the anterior part of the GIT, blood was sampled from the DA, SIV and hepatic portal vein (HPV) from anaesthetized fish in situ following voluntary feeding. We found minimal equilibration of all three gases between the GIT lumen and the SIV blood, with the latter maintaining pre-feeding levels (PO2 = 25-49 Torr, PCO2 = 6-8 Torr, and total ammonia = 117-134 µM and PNH3 = 13-30 µTorr at 48 h post-feeding). In contrast to the SIV, we found that the HPV total ammonia more than doubled 24 h after feeding (128 to 297 µM), indicative of absorption in the anterior GIT. Overall, the GIT epithelia of trout, although specialized for absorption, prevent dangerous levels of PO2, PCO2 and ammonia from equilibrating with the blood circulation.
Assuntos
Oncorhynchus mykiss , Infecções por Papillomavirus , Animais , Oncorhynchus mykiss/fisiologia , Dióxido de Carbono , Oxigênio , Amônia , Trato Gastrointestinal , Água DoceRESUMO
At low tide, the green crab, which is capable of breathing air, may leave the water and walk on the foreshore, carrying branchial chamber fluid (BCF). N-waste metabolism was examined in crabs at rest in seawater (32 ppt, 13°C), and during 18-h recovery in seawater after 1 h of exhaustive exercise (0.25 BL s-1 ) on a treadmill in air (20°C-23°C), or 1 h of quiet emersion in air. Measurements were made in parallel to O2 consumption (MO2 ), acid-base, cardio-respiratory, and ion data reported previously. At rest, the ammonia-N excretion rate (MAmm = 44 µmol-N kg-1 h-1 ) and ammonia quotient (AQ; MAmm /MO2 = 0.088) were low for a carnivore. Immediately after exercise and return to seawater, MAmm increased by 65-fold above control rates. After emersion alone and return to seawater, MAmm increased by 17-fold. These ammonia-N bursts were greater, but transient relative to longer-lasting elevations in MO2 , resulting in temporal disturbances of AQ. Intermittent excretion of urea-N and urate-N at rest and during recovery indicated the metabolic importance of these N-wastes. Hemolymph glutamate, glutamine, and PNH3 did not change. Hemolymph ammonia-N, urea-N, and urate-N concentrations increased after exercise and more moderately after emersion, with urate-N exhibiting the largest absolute increments, and urea-N the longest-lasting elevations. All three N-wastes were present in the BCF, with ammonia-N and PNH3 far above hemolymph levels even at rest. BCF volume declined by 34% postemersion and 77% postexercise, with little change in osmolality but large increases in ammonia-N concentrations. Neither rapid flushing of stored BCF nor clearance of hemolymph ammonia-N could explain the surges in MAmm after return to seawater.
Assuntos
Braquiúros , Animais , Nitrogênio/metabolismo , Amônia/metabolismo , Ácido Úrico/metabolismo , Água do Mar , Ureia/metabolismoRESUMO
Although the gastrointestinal tract (GIT) is an important site for nitrogen metabolism in teleosts, the mechanisms of ammonia absorption and transport remain to be elucidated. Both protein catabolism in the lumen and the metabolism of the GIT tissues produce ammonia which, in part, enters the portal blood through the anterior region of the GIT. The present study examined the possible roles of different GIT sections of rainbow trout (Oncorhynchus mykiss) in transporting ammonia in its unionized gas form-NH3 -by changing the PNH3 gradient across GIT epithelia using in vitro gut sac preparations. We also surveyed messenger RNA expression patterns of three of the identified Rh proteins (Rhbg, Rhcg1, and Rhcg2) as potential NH3 transporters and NKCC as a potential ammonium ion (NH4 + ) transporter along the GIT of rainbow trout. We found that ammonia absorption is not dependent on the PNH3 gradient despite expression of Rhbg and Rhcg2 in the intestinal tissues, and Rhcg2 in the stomach. We detected no expression of Rhbg in the stomach and no expression of Rhcg1 in any GIT tissues. There was also a lack of correlation between ammonia transport and [NH4 + ] gradient despite NKCC expression in all GIT tissues. Regardless of PNH3 gradients, the stomach showed the greatest absorption and net tissue consumption of ammonia. Overall, our findings suggest nitrogen metabolism zonation of GIT, with stomach serving as an important site for the absorption, handling and transport of ammonia that is independent of the PNH3 gradient.
Assuntos
Oncorhynchus mykiss , Animais , Oncorhynchus mykiss/fisiologia , Amônia/metabolismo , Estômago , Trato Gastrointestinal , Nitrogênio/metabolismoRESUMO
To evaluate the physiological ability to adjust to environmental variations of salinity, Carcinus maenas were maintained in 10, 20, 32 (control), 40, and 50 ppt (13.8 ± 0.6 °C) for 7 days. Closed respirometry systems were used to evaluate oxygen consumption ([Formula: see text]), ammonia excretion (Jamm), urea-N excretion (Jurea-N) and diffusive water fluxes (with 3H2O). Ions, osmolality, metabolites, and acid-base status were determined in the hemolymph and seawater, and transepithelial potential (TEP) was measured. At the lowest salinity, there were marked increases in [Formula: see text] and Jamm, greater reliance on N-containing fuels to support aerobic metabolism, and a state of internal metabolic alkalosis (increased [HCO3-]) despite lower seawater pH. At higher salinities, an activation of anaerobic metabolism and a state of metabolic acidosis (decreased [HCO3-] and increased [lactate]), in combination with respiratory compensation (decreased PCO2), were detected. TEP became more negative with decreasing salinity. Osmoregulation and osmoconformation occurred at low and high salinities, respectively, with complex patterns in individual ions; hemolymph [Mg2+] was particularly well regulated at levels well below the external seawater at all salinities. Diffusive water flux rates increased at higher salinities. Our results show that C. maenas exhibits wide plasticity of physiological responses when acclimated to different salinities and tolerates substantial disturbances of physiological parameters, illustrating that this species is well adapted to invade and survive in diverse habitats.
Assuntos
Braquiúros , Salinidade , Amônia/metabolismo , Animais , Braquiúros/fisiologia , Brânquias/metabolismo , Íons/metabolismo , Lactatos/metabolismo , Água do Mar , Ureia/metabolismo , Água/metabolismoRESUMO
In fresh water, environmental Ca ameliorates Zn toxicity because Ca2+ and Zn2+ compete for uptake at the gills. Zn toxicity is also lower in sea water, but it is unclear whether this is due to increased Ca2+ concentration, and/or to the other ions present at higher salinity. Using the euryhaline killifish, we evaluated the relative roles of Ca2+ (as CaNO3) versus the other ions contributing to salinity in protecting against physiological symptoms of Zn2+ toxicity. Killifish were exposed to a sublethal level of Zn (500 µg/L, as ZnSO4) for 96 h in either fresh water (0 % salinity) at low (1 mmol/L) and High Ca (10 mmol/L) or 35 ppt sea water (100 % salinity) at low (1 mmol/L) and High Ca (10 mmol/L). At 0 % salinity, High Ca partly or completely protected against the following effects of Zn seen at Low Ca: elevated plasma Zn, hypocalcaemia, inhibited unidirectional Ca2+ influx, inhibited branchial Na+/K+ATPase and Ca2+ATPase activities, and oxidative stress in gills, liver, intestine, and muscle. At 100 % salinity, in the presence of 1 mmol/L (Low Ca), Zn caused no disturbances in most of these same parameters, showing that the "non-Ca" components of sea water alone provided complete protection. However, for a few endpoints (inhibited intestinal Ca2+ATPase activity, oxidative stress in gill and liver), High Ca (10 mmol/L) was needed to provide full protection against Zn in 100 % salinity. There was no instance where the combination of 100 % salinity and High Ca failed to provide complete protection against Zn-induced disturbances in sea water.
Assuntos
Fundulidae , Poluentes Químicos da Água , Adenosina Trifosfatases , Animais , Cálcio , Fundulidae/fisiologia , Brânquias , Salinidade , Água do Mar , Poluentes Químicos da Água/toxicidade , Zinco/toxicidadeRESUMO
The functional trade-off between respiratory gas exchange versus osmolyte and water balance that occurs at the thin, highly vascularized gills of fishes has been termed the osmorespiratory compromise. Increases in gas exchange capacity for meeting elevated oxygen demands can end up favoring the passive movement of osmolytes and water, potentially causing a disturbance in osmotic balance. This phenomenon has been studied only sparsely in marine elasmobranchs. Our goal was to evaluate the effects of exhaustive exercise (as a modulator of oxygen demand) on oxygen consumption (MO2), branchial losses of nitrogenous products (ammonia and urea-N), diffusive water exchange rates, and gill ventilation (frequency and amplitude), in the Pacific spiny dogfish (Squalus suckleyi). To that end, MO2, osmolyte fluxes, diffusive water exchange rate, and ventilation dynamics were first measured under resting control conditions, then sharks were exercised until exhaustion (20 min), and the same parameters were monitored for the subsequent 4 h of recovery. While MO2 nearly doubled immediately after exercise and remained elevated for 2 h, ventilation dynamics did not change, suggesting that fish were increasing oxygen extraction efficiency at the gills. Diffusive water flux rates (measured over 0-2 h of recovery) were not affected. Ammonia losses were elevated by 7.6-fold immediately after exercise and remained elevated for 3 h into recovery, while urea-N losses were elevated only 1.75-fold and returned to control levels after 1 h. These results are consistent with previous investigations using different challenges (hypoxia, high temperature) and point to a tighter regulation of urea-N conservation mechanisms at the gills, likely due to the use of urea as a prized osmolyte in elasmobranchs. Environmental hyperoxia offered no relief from the osmorespiratory compromise, as there were no effects on any of the parameters measured during recovery from exhaustive exercise.