Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
bioRxiv ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39109178

RESUMO

The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (ß-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other ß-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines. One of these S2-directed mAbs, CC40.8, has demonstrated protective efficacy in small animal models against SARS-CoV-2 challenge. As the next step in the pre-clinical testing of S2-directed antibodies as a strategy to protect from SARS-CoV-2 infection, we evaluated the in vivo efficacy of CC40.8 in a clinically relevant non-human primate model by conducting passive antibody transfer to rhesus macaques (RM) followed by SARS-CoV-2 challenge. CC40.8 mAb was intravenously infused at 10mg/kg, 1mg/kg, or 0.1 mg/kg into groups (n=6) of RM, alongside one group that received a control antibody (PGT121). Viral loads in the lower airway were significantly reduced in animals receiving higher doses of CC40.8. We observed a significant reduction in inflammatory cytokines and macrophages within the lower airway of animals infused with 10mg/kg and 1mg/kg doses of CC40.8. Viral genome sequencing demonstrated a lack of escape mutations in the CC40.8 epitope. Collectively, these data demonstrate the protective efficiency of broadly neutralizing S2-targeting antibodies against SARS-CoV-2 infection within the lower airway while providing critical preclinical work necessary for the development of pan-ß-CoV vaccines.

2.
Sci Immunol ; 8(85): eadg0033, 2023 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-37506197

RESUMO

Type I interferons (IFN-I) are critical mediators of innate control of viral infections but also drive the recruitment of inflammatory cells to sites of infection, a key feature of severe coronavirus disease 2019. Here, IFN-I signaling was modulated in rhesus macaques (RMs) before and during acute SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection using a mutated IFN-α2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. IFNmod treatment in uninfected RMs was observed to induce a modest up-regulation of only antiviral IFN-stimulated genes (ISGs); however, in SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. IFNmod treatment resulted in a potent reduction in SARS-CoV-2 viral loads both in vitro in Calu-3 cells and in vivo in bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes of RMs. Furthermore, in SARS-CoV-2-infected RMs, IFNmod treatment potently reduced inflammatory cytokines, chemokines, and CD163+ MRC1- inflammatory macrophages in BAL and expression of Siglec-1 on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. Using an intervention targeting both IFN-α and IFN-ß pathways, this study shows that, whereas early IFN-I restrains SARS-CoV-2 replication, uncontrolled IFN-I signaling critically contributes to SARS-CoV-2 inflammation and pathogenesis in the moderate disease model of RMs.


Assuntos
COVID-19 , Interferon Tipo I , Animais , Interferon Tipo I/farmacologia , SARS-CoV-2 , Macaca mulatta , Replicação Viral , Antivirais/farmacologia , Antivirais/uso terapêutico , Inflamação/tratamento farmacológico
3.
J Med Primatol ; 52(2): 108-120, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36744630

RESUMO

BACKGROUND: Compatible pair housing of macaques in research settings increases species-typical behaviors and facilitates beneficial social buffering. It is not yet established whether these benefits are maintained after intrafacility transfer and domestic quarantine, which are two stressors that can lead to behavioral and clinical abnormalities. METHODS: We evaluated 40 adolescent male rhesus macaques who were single- or pair-housed immediately following an intrafacility transfer. We measured behavior, fecal cortisol, body weight, and diarrhea occurrence. Body weight and diarrhea occurrence were also retrospectively analyzed in an additional 120 adolescent rhesus who underwent a similar transfer. RESULTS AND CONCLUSIONS: Pair-housed macaques exhibited less of some undesirable behaviors (e.g., self-clasping) and experienced less diarrhea than single-housed subjects; however, no significant differences in cortisol levels or alopecia measures were found. The demonstrated beneficial effects of pair housing for rhesus macaques following intrafacility transfer and adjustment suggest pairing upon arrival at a new facility will bolster animal welfare.


Assuntos
Hidrocortisona , Quarentena , Animais , Masculino , Macaca mulatta , Quarentena/veterinária , Estudos Retrospectivos , Abrigo para Animais , Comportamento Social , Comportamento Animal
4.
bioRxiv ; 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36324810

RESUMO

Type-I interferons (IFN-I) are critical mediators of innate control of viral infections, but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, and for the first time, IFN-I signaling was modulated in rhesus macaques (RMs) prior to and during acute SARS-CoV-2 infection using a mutated IFNα2 (IFN-modulator; IFNmod), which has previously been shown to reduce the binding and signaling of endogenous IFN-I. In SARS-CoV-2-infected RMs, IFNmod reduced both antiviral and inflammatory ISGs. Notably, IFNmod treatment resulted in a potent reduction in (i) SARS-CoV-2 viral load in Bronchoalveolar lavage (BAL), upper airways, lung, and hilar lymph nodes; (ii) inflammatory cytokines, chemokines, and CD163+MRC1-inflammatory macrophages in BAL; and (iii) expression of Siglec-1, which enhances SARS-CoV-2 infection and predicts disease severity, on circulating monocytes. In the lung, IFNmod also reduced pathogenesis and attenuated pathways of inflammasome activation and stress response during acute SARS-CoV-2 infection. This study, using an intervention targeting both IFN-α and IFN-ß pathways, shows that excessive inflammation driven by type 1 IFN critically contributes to SARS-CoV-2 pathogenesis in RMs, and demonstrates the potential of IFNmod to limit viral replication, SARS-CoV-2 induced inflammation, and COVID-19 severity.

5.
Front Cell Infect Microbiol ; 12: 888496, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811680

RESUMO

Plasmodium knowlesi poses a health threat throughout Southeast Asian communities and currently causes most cases of malaria in Malaysia. This zoonotic parasite species has been studied in Macaca mulatta (rhesus monkeys) as a model for severe malarial infections, chronicity, and antigenic variation. The phenomenon of Plasmodium antigenic variation was first recognized during rhesus monkey infections. Plasmodium-encoded variant proteins were first discovered in this species and found to be expressed at the surface of infected erythrocytes, and then named the Schizont-Infected Cell Agglutination (SICA) antigens. SICA expression was shown to be spleen dependent, as SICA expression is lost after P. knowlesi is passaged in splenectomized rhesus. Here we present data from longitudinal P. knowlesi infections in rhesus with the most comprehensive analysis to date of clinical parameters and infected red blood cell sequestration in the vasculature of tissues from 22 organs. Based on the histopathological analysis of 22 tissue types from 11 rhesus monkeys, we show a comparative distribution of parasitized erythrocytes and the degree of margination of the infected erythrocytes with the endothelium. Interestingly, there was a significantly higher burden of parasites in the gastrointestinal tissues, and extensive margination of the parasites along the endothelium, which may help explain gastrointestinal symptoms frequently reported by patients with P. knowlesi malarial infections. Moreover, this margination was not observed in splenectomized rhesus that were infected with parasites not expressing the SICA proteins. This work provides data that directly supports the view that a subpopulation of P. knowlesi parasites cytoadheres and sequesters, likely via SICA variant antigens acting as ligands. This process is akin to the cytoadhesive function of the related variant antigen proteins, namely Erythrocyte Membrane Protein-1, expressed by Plasmodium falciparum.


Assuntos
Malária , Plasmodium knowlesi , Plasmodium , Aglutinação , Animais , Antígenos , Membrana Eritrocítica , Eritrócitos/parasitologia , Macaca mulatta , Malária/parasitologia , Plasmodium knowlesi/genética , Esquizontes
6.
J Virol ; 96(7): e0169921, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293766

RESUMO

The "shock and kill" strategy for HIV-1 cure incorporates latency-reversing agents (LRA) in combination with interventions that aid the host immune system in clearing virally reactivated cells. LRAs have not yet been investigated in pediatric clinical or preclinical studies. Here, we evaluated an inhibitor of apoptosis protein (IAP) inhibitor (IAPi), AZD5582, that activates the noncanonical NF-κB (ncNF-κB) signaling pathway to reverse latency. Ten weekly doses of AZD5582 were intravenously administered at 0.1 mg/kg to rhesus macaque (RM) infants orally infected with SIVmac251 at 4 weeks of age and treated with a triple ART regimen for over 1 year. During AZD5582 treatment, on-ART viremia above the limit of detection (LOD, 60 copies/mL) was observed in 5/8 infant RMs starting at 3 days post-dose 4 and peaking at 771 copies/mL. Of the 135 measurements during AZD5582 treatment in these 5 RM infants, only 8 were above the LOD (6%), lower than the 46% we have previously reported in adult RMs. Pharmacokinetic analysis of plasma AZD5582 levels revealed a lower Cmax in treated infants compared to adults (294 ng/mL versus 802 ng/mL). RNA-Sequencing of CD4+ T cells comparing pre- and post-AZD5582 dosing showed many genes that were similarly upregulated in infants and adults, but the expression of key ncNF-κB genes, including NFKB2 and RELB, was significantly higher in adult RMs. Our results suggest that dosing modifications for this latency reversal approach may be necessary to maximize virus reactivation in the pediatric setting for successful "shock and kill" strategies. IMPORTANCE While antiretroviral therapy (ART) has improved HIV-1 disease outcome and reduced transmission, interruption of ART results in rapid viral rebound due to the persistent latent reservoir. Interventions to reduce the viral reservoir are of critical importance, especially for children who must adhere to lifelong ART to prevent disease progression. Here, we used our previously established pediatric nonhuman primate model of oral SIV infection to evaluate AZD5582, identified as a potent latency-reversing agent in adult macaques, in the controlled setting of daily ART. We demonstrated the safety of the IAPi AZD5582 and evaluate the pharmacokinetics and pharmacodynamics of repeated dosing. The response to AZD5582 in macaque infants differed from what we previously showed in adult macaques with weaker latency reversal in infants, likely due to altered pharmacokinetics and less inducibility of infant CD4+ T cells. These data supported the contention that HIV-1 cure strategies for children are best evaluated using pediatric model systems.


Assuntos
Infecções por HIV , HIV-1 , Síndrome de Imunodeficiência Adquirida dos Símios , Vírus da Imunodeficiência Símia , Alcinos/farmacocinética , Alcinos/farmacologia , Alcinos/uso terapêutico , Animais , Antirretrovirais/farmacocinética , Antirretrovirais/farmacologia , Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos , Infecções por HIV/tratamento farmacológico , HIV-1/genética , Humanos , Macaca mulatta , Oligopeptídeos/farmacocinética , Oligopeptídeos/farmacologia , Oligopeptídeos/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Carga Viral , Latência Viral/efeitos dos fármacos , Replicação Viral
7.
Malar J ; 20(1): 486, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34969401

RESUMO

BACKGROUND: Kra monkeys (Macaca fascicularis), a natural host of Plasmodium knowlesi, control parasitaemia caused by this parasite species and escape death without treatment. Knowledge of the disease progression and resilience in kra monkeys will aid the effective use of this species to study mechanisms of resilience to malaria. This longitudinal study aimed to define clinical, physiological and pathological changes in kra monkeys infected with P. knowlesi, which could explain their resilient phenotype. METHODS: Kra monkeys (n = 15, male, young adults) were infected intravenously with cryopreserved P. knowlesi sporozoites and the resulting parasitaemias were monitored daily. Complete blood counts, reticulocyte counts, blood chemistry and physiological telemetry data (n = 7) were acquired as described prior to infection to establish baseline values and then daily after inoculation for up to 50 days. Bone marrow aspirates, plasma samples, and 22 tissue samples were collected at specific time points to evaluate longitudinal clinical, physiological and pathological effects of P. knowlesi infections during acute and chronic infections. RESULTS: As expected, the kra monkeys controlled acute infections and remained with low-level, persistent parasitaemias without anti-malarial intervention. Unexpectedly, early in the infection, fevers developed, which ultimately returned to baseline, as well as mild to moderate thrombocytopenia, and moderate to severe anaemia. Mathematical modelling and the reticulocyte production index indicated that the anaemia was largely due to the removal of uninfected erythrocytes and not impaired production of erythrocytes. Mild tissue damage was observed, and tissue parasite load was associated with tissue damage even though parasite accumulation in the tissues was generally low. CONCLUSIONS: Kra monkeys experimentally infected with P. knowlesi sporozoites presented with multiple clinical signs of malaria that varied in severity among individuals. Overall, the animals shared common mechanisms of resilience characterized by controlling parasitaemia 3-5 days after patency, and controlling fever, coupled with physiological and bone marrow responses to compensate for anaemia. Together, these responses likely minimized tissue damage while supporting the establishment of chronic infections, which may be important for transmission in natural endemic settings. These results provide new foundational insights into malaria pathogenesis and resilience in kra monkeys, which may improve understanding of human infections.


Assuntos
Resistência à Doença , Macaca fascicularis , Malária/veterinária , Doenças dos Macacos/parasitologia , Parasitemia/veterinária , Plasmodium knowlesi/fisiologia , Animais , Estudos Longitudinais , Malária/parasitologia , Masculino , Parasitemia/parasitologia
8.
JCI Insight ; 6(23)2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34699383

RESUMO

Understanding viral rebound in pediatric HIV-1 infection may inform the development of alternatives to lifelong antiretroviral therapy (ART) to achieve viral remission. We thus investigated viral rebound after analytical treatment interruption (ATI) in 10 infant macaques orally infected with SHIV.C.CH505 and treated with long-term ART. Rebound viremia was detected within 7 to 35 days of ATI in 9 of 10 animals, with posttreatment control of viremia seen in 5 of 5 Mamu-A*01+ macaques. Single-genome sequencing revealed that initial rebound virus was similar to viral DNA present in CD4+ T cells from blood, rectum, and lymph nodes before ATI. We assessed the earliest sites of viral reactivation immediately following ATI using ImmunoPET imaging. The largest increase in signal that preceded detectable viral RNA in plasma was found in the gastrointestinal (GI) tract, a site with relatively high SHIV RNA/DNA ratios in CD4+ T cells before ATI. Thus, the GI tract may be an initial source of rebound virus, but as ATI progresses, viral reactivation in other tissues likely contributes to the composition of plasma virus. Our study provides potentially novel insight into the features of viral rebound in pediatric infection and highlights the application of a noninvasive technique to monitor areas of HIV-1 expression in children.


Assuntos
Antirretrovirais/uso terapêutico , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Viremia/etiologia , Animais , Feminino , Macaca , Masculino , Viremia/patologia
9.
Sci Immunol ; 6(61)2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266981

RESUMO

Ongoing SARS-CoV-2 vaccine development is focused on identifying stable, cost-effective, and accessible candidates for global use, specifically in low and middle-income countries. Here, we report the efficacy of a rapidly scalable, novel yeast expressed SARS-CoV-2 specific receptor-binding domain (RBD) based vaccine in rhesus macaques. We formulated the RBD immunogen in alum, a licensed and an emerging alum adsorbed TLR-7/8 targeted, 3M-052-alum adjuvants. The RBD+3M-052-alum adjuvanted vaccine promoted better RBD binding and effector antibodies, higher CoV-2 neutralizing antibodies, improved Th1 biased CD4+T cell reactions, and increased CD8+ T cell responses when compared to the alum-alone adjuvanted vaccine. RBD+3M-052-alum induced a significant reduction of SARS-CoV-2 virus in respiratory tract upon challenge, accompanied by reduced lung inflammation when compared with unvaccinated controls. Anti-RBD antibody responses in vaccinated animals inversely correlated with viral load in nasal secretions and BAL. RBD+3M-052-alum blocked a post SARS-CoV-2 challenge increase in CD14+CD16++ intermediate blood monocytes, and Fractalkine, MCP-1, and TRAIL in the plasma. Decreased plasma analytes and intermediate monocyte frequencies correlated with reduced nasal and BAL viral loads. Lastly, RBD-specific plasma cells accumulated in the draining lymph nodes and not in the bone marrow, contrary to previous findings. Together, these data show that a yeast expressed, RBD-based vaccine+3M-052-alum provides robust immune responses and protection against SARS-CoV-2, making it a strong and scalable vaccine candidate.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Compostos de Alúmen/administração & dosagem , Vacinas contra COVID-19 , COVID-19/prevenção & controle , SARS-CoV-2 , Saccharomycetales/genética , Glicoproteína da Espícula de Coronavírus/genética , Administração por Inalação , Administração Intranasal , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Linhagem Celular , Citocinas/imunologia , Humanos , Imunoglobulina G/imunologia , Pulmão/patologia , Macaca mulatta , Masculino , Ligação Proteica , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/imunologia , Carga Viral
10.
Immunity ; 54(3): 542-556.e9, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33631118

RESUMO

A combination of vaccination approaches will likely be necessary to fully control the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Here, we show that modified vaccinia Ankara (MVA) vectors expressing membrane-anchored pre-fusion stabilized spike (MVA/S) but not secreted S1 induced strong neutralizing antibody responses against SARS-CoV-2 in mice. In macaques, the MVA/S vaccination induced strong neutralizing antibodies and CD8+ T cell responses, and conferred protection from SARS-CoV-2 infection and virus replication in the lungs as early as day 2 following intranasal and intratracheal challenge. Single-cell RNA sequencing analysis of lung cells on day 4 after infection revealed that MVA/S vaccination also protected macaques from infection-induced inflammation and B cell abnormalities and lowered induction of interferon-stimulated genes. These results demonstrate that MVA/S vaccination induces neutralizing antibodies and CD8+ T cells in the blood and lungs and is a potential vaccine candidate for SARS-CoV-2.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Vetores Genéticos/genética , SARS-CoV-2/imunologia , Vacinas de DNA/imunologia , Vaccinia virus/genética , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Antígenos Virais/genética , Antígenos Virais/imunologia , COVID-19/imunologia , COVID-19/patologia , COVID-19/virologia , Vacinas contra COVID-19/genética , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Imunofenotipagem , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Macaca , Macrófagos Alveolares/imunologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Vacinação/métodos , Vacinas de DNA/genética
11.
Cell ; 184(2): 460-475.e21, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33278358

RESUMO

SARS-CoV-2-induced hypercytokinemia and inflammation are critically associated with COVID-19 severity. Baricitinib, a clinically approved JAK1/JAK2 inhibitor, is currently being investigated in COVID-19 clinical trials. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages, and tissues was not reduced with baricitinib. Type I interferon (IFN) antiviral responses and SARS-CoV-2-specific T cell responses remained similar between the two groups. Animals treated with baricitinib showed reduced inflammation, decreased lung infiltration of inflammatory cells, reduced NETosis activity, and more limited lung pathology. Importantly, baricitinib-treated animals had a rapid and remarkably potent suppression of lung macrophage production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for inflammation induced by SARS-CoV-2 infection.


Assuntos
Anti-Inflamatórios/administração & dosagem , Azetidinas/administração & dosagem , Tratamento Farmacológico da COVID-19 , COVID-19/imunologia , Macaca mulatta , Infiltração de Neutrófilos/efeitos dos fármacos , Purinas/administração & dosagem , Pirazóis/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , COVID-19/fisiopatologia , Morte Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Modelos Animais de Doenças , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/imunologia , Janus Quinases/antagonistas & inibidores , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/patologia , Ativação Linfocitária/efeitos dos fármacos , Macrófagos Alveolares/imunologia , SARS-CoV-2/fisiologia , Índice de Gravidade de Doença , Linfócitos T/imunologia , Replicação Viral/efeitos dos fármacos
12.
bioRxiv ; 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32995780

RESUMO

Effective therapeutics aimed at mitigating COVID-19 symptoms are urgently needed. SARS-CoV-2 induced hypercytokinemia and systemic inflammation are associated with disease severity. Baricitinib, a clinically approved JAK1/2 inhibitor with potent anti-inflammatory properties is currently being investigated in COVID-19 human clinical trials. Recent reports suggest that baricitinib may also have antiviral activity in limiting viral endocytosis. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages and tissues was not reduced with baricitinib. Type I IFN antiviral responses and SARS-CoV-2 specific T cell responses remained similar between the two groups. Importantly, however, animals treated with baricitinib showed reduced immune activation, decreased infiltration of neutrophils into the lung, reduced NETosis activity, and more limited lung pathology. Moreover, baricitinib treated animals had a rapid and remarkably potent suppression of alveolar macrophage derived production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for severe inflammation induced by SARS-CoV-2 infection.

13.
Comp Med ; 70(1): 83-86, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31747992

RESUMO

On postmortem examination, 2 geriatric captive male squirrel monkeys (Saimiri sciureus) were found to have pituitary masses that were unassociated with previous experimental manipulation. Both animals were euthanized due to apparently unrelated clinical reasons. Histopathology and immunohistochemical staining classified these tumors as thyrotrophic and corticotrophic pituitary adenomas. These cases represent the first reports of this tumor type in squirrel monkeys.


Assuntos
Adenoma/patologia , Neoplasias Hipofisárias/patologia , Saimiri , Adenoma/veterinária , Animais , Evolução Fatal , Masculino , Doenças dos Macacos/patologia , Neoplasias Hipofisárias/veterinária
15.
Am J Trop Med Hyg ; 97(2): 548-555, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28829738

RESUMO

Histopathological data collected from patients with severe malaria have been instrumental for studying malaria pathogenesis. Animal models of malaria are critical to complement such studies. Here, the histopathological changes observed in a rhesus macaque with severe and complicated Plasmodium cynomolgi malaria are reported. The animal presented with thrombocytopenia, severe anemia, and hyperparasitemia during the acute infection. The macaque was given subcurative antimalarial treatment, fluid support, and a blood transfusion to treat the clinical complications, but at the time of transfusion, kidney function was compromised. These interventions did not restore kidney function, and the animal was euthanized due to irreversible renal failure. Gross pathological and histological examinations revealed that the lungs, kidneys, liver, spleen, and bone marrow exhibited abnormalities similar to those described in patients with malaria. Overall, this case report illustrates the similarities in the pathophysiological complications that can occur in human malaria and cynomolgi malaria in rhesus macaques.


Assuntos
Macaca mulatta/parasitologia , Malária/complicações , Malária/parasitologia , Plasmodium cynomolgi/isolamento & purificação , Plasmodium cynomolgi/parasitologia , Plasmodium cynomolgi/patogenicidade , Animais , Medula Óssea/anatomia & histologia , Modelos Animais de Doenças , Humanos , Rim/citologia , Fígado/citologia , Pulmão/citologia , Malária/patologia , Baço/citologia
16.
Am J Primatol ; 79(1): 1-15, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26422282

RESUMO

Pair housing of macaques has become a widely implemented compromise between meeting the social needs of the monkeys and allowing for their use in biomedical research. While beneficial to the animals, pair housing can provide challenges for those caring for them. Drawing from both scientific literature and direct experience, this paper provides a review of practical aspects of pair housing including partner selection, pairing methodologies, staff education, and equipment considerations. Recommendations include selecting a pairing method appropriate to the facility and the individual animals being paired, educating staff on social behavior, and establishing a pair monitoring program to facilitate long-term pair maintenance. Assessment of behavior is essential in determining the compatibility of new pairs and in identifying established pairs that may need interventions to enhance their long-term compatibility. The pair housing program at the Yerkes National Primate Research Center is described as one model of a successful program. Am. J. Primatol. 79:e22485, 2017. © 2015 Wiley Periodicals, Inc.


Assuntos
Macaca , Ligação do Par , Comportamento Social , Animais , Animais de Laboratório , Abrigo para Animais , Primatas
17.
Cell Rep ; 17(9): 2195-2209, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27880897

RESUMO

Generating tier 2 HIV-neutralizing antibody (nAb) responses by immunization remains a challenging problem, and the immunological barriers to induction of such responses with Env immunogens remain unclear. Here, some rhesus monkeys developed autologous tier 2 nAbs upon HIV Env trimer immunization (SOSIP.v5.2) whereas others did not. This was not because HIV Env trimers were immunologically silent because all monkeys made similar ELISA-binding antibody responses; the key difference was nAb versus non-nAb responses. We explored the immunological barriers to HIV nAb responses by combining a suite of techniques, including longitudinal lymph node fine needle aspirates. Unexpectedly, nAb development best correlated with booster immunization GC B cell magnitude and Tfh characteristics of the Env-specific CD4 T cells. Notably, these factors distinguished between successful and unsuccessful antibody responses because GC B cell frequencies and stoichiometry to GC Tfh cells correlated with nAb development, but did not correlate with total Env Ab binding titers.


Assuntos
Anticorpos Neutralizantes/imunologia , Formação de Anticorpos/imunologia , Centro Germinativo/imunologia , HIV-1/imunologia , Multimerização Proteica , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , Animais , Linfócitos B/imunologia , Biópsia por Agulha Fina , Linhagem da Célula , Células Clonais , Imunização , Macaca mulatta , Ligação Proteica , Linfócitos T Auxiliares-Indutores/imunologia
19.
J Am Assoc Lab Anim Sci ; 52(3): 259-64, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23849408

RESUMO

Current treatment options for murine fur mites have limitations in safety and efficacy. This study evaluated whether topical lime sulfur (LS) is an adjunct or alternative to traditional treatment options for Myocoptes musculinus. To evaluate the safety of topical LS, mice were dipped in a 3% LS solution at 34 and 41 d of age. Mice were observed daily for side effects and mortality, with blood work and necropsy at 42 d of age to evaluate for pathologic changes. To determine the efficacy of topical LS, postweanling mice infested with M. musculinus were treated with LS once weekly for 2 wk and then housed with uninfested sentinel mice for 4 wk. Weekly tape tests and postmortem tape tests and skin scrapings were performed on all mice. Treated postweanling mice had significantly lower Hgb levels and higher BUN levels than did control animals. In mite-infested mice, the number of positive cages at euthanasia was the same between treated and control animals. Although topical LS did not cause gross or microscopic changes to organ systems, it may cause clinicopathologic changes, and topical LS is not effective as a sole treatment for M. musculinus infestation of postweanling mice.


Assuntos
Compostos de Cálcio/efeitos adversos , Camundongos , Infestações por Ácaros/veterinária , Doenças dos Roedores/tratamento farmacológico , Sulfetos/efeitos adversos , Administração Tópica , Animais , Animais de Laboratório , Compostos de Cálcio/administração & dosagem , Feminino , Camundongos Endogâmicos C57BL , Infestações por Ácaros/tratamento farmacológico , Ácaros , Sulfetos/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA