RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
The differentiation of fibroblasts into a transient population of highly activated, extracellular matrix (ECM)-producing myofibroblasts at sites of tissue injury is critical for normal tissue repair. Excessive myofibroblast accumulation and persistence, often as a result of a failure to undergo apoptosis when tissue repair is complete, lead to pathological fibrosis and are also features of the stromal response in cancer. Myofibroblast differentiation is accompanied by changes in cellular metabolism, including increased glycolysis, to meet the biosynthetic demands of enhanced ECM production. Here, we showed that transforming growth factor-ß1 (TGF-ß1), the key pro-fibrotic cytokine implicated in multiple fibrotic conditions, increased the production of activating transcription factor 4 (ATF4), the transcriptional master regulator of amino acid metabolism, to supply glucose-derived glycine to meet the amino acid requirements associated with enhanced collagen production in response to myofibroblast differentiation. We further delineated the signaling pathways involved and showed that TGF-ß1-induced ATF4 production depended on cooperation between canonical TGF-ß1 signaling through Smad3 and activation of mechanistic target of rapamycin complex 1 (mTORC1) and its downstream target eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1). ATF4, in turn, promoted the transcription of genes encoding enzymes of the de novo serine-glycine biosynthetic pathway and glucose transporter 1 (GLUT1). Our findings suggest that targeting the TGF-ß1-mTORC1-ATF4 axis may represent a novel therapeutic strategy for interfering with myofibroblast function in fibrosis and potentially in other conditions, including cancer.
Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Colágeno/biossíntese , Glicina/biossíntese , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Serina/biossíntese , Fator de Crescimento Transformador beta1/farmacologia , Fator 4 Ativador da Transcrição/genética , Vias Biossintéticas/efeitos dos fármacos , Vias Biossintéticas/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Matriz Extracelular/metabolismo , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Miofibroblastos/citologia , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
Phosphatidylinositol 3-kinases (PI3Ks) and mammalian target of rapamycin (mTOR) play a role in the pathogenesis of idiopathic pulmonary fibrosis (IPF). Omipalisib (GSK2126458) is a potent inhibitor of PI3K/mTOR.A randomised, placebo-controlled, double-blind, repeat dose escalation, experimental medicine study of omipalisib in subjects with IPF was conducted (NCT01725139) to test safety, tolerability, pharmacokinetics and pharmacodynamics. Omipalisib was dosed at 0.25â mg, 1â mg and 2â mg twice daily for 8â days in four cohorts of four subjects randomised 3:1 to receive omipalisib or placebo (two cohorts received 2â mg twice daily).17 subjects with IPF were enrolled. The most common adverse event was diarrhoea, which was reported by four participants. Dose-related increases in insulin and glucose were observed. Pharmacokinetic analysis demonstrated that exposure in the blood predicts lung exposure. Exposure-dependent inhibition of phosphatidylinositol 3,4,5 trisphosphate and pAKT confirmed target engagement in blood and lungs. 18F-2-fluoro-2-deoxy-d-glucose(FDG)-positron emission tomography/computed tomography scans revealed an exposure-dependent reduction in 18F-FDG uptake in fibrotic areas of the lung, as measured by target-to-background, ratio thus confirming pharmacodynamic activity.This experimental medicine study demonstrates acceptable tolerability of omipalisib in subjects with IPF at exposures for which target engagement was confirmed both systemically and in the lungs.
Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Quinolinas/administração & dosagem , Sulfonamidas/administração & dosagem , Administração Oral , Idoso , Relação Dose-Resposta a Droga , Método Duplo-Cego , Feminino , Fluordesoxiglucose F18 , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Piridazinas , Serina-Treonina Quinases TOR/metabolismo , Resultado do TratamentoRESUMO
Myofibroblasts are the key effector cells responsible for excessive extracellular matrix deposition in multiple fibrotic conditions, including idiopathic pulmonary fibrosis (IPF). The PI3K/Akt/mTOR axis has been implicated in fibrosis, with pan-PI3K/mTOR inhibition currently under clinical evaluation in IPF. Here we demonstrate that rapamycin-insensitive mTORC1 signaling via 4E-BP1 is a critical pathway for TGF-ß1 stimulated collagen synthesis in human lung fibroblasts, whereas canonical PI3K/Akt signaling is not required. The importance of mTORC1 signaling was confirmed by CRISPR-Cas9 gene editing in normal and IPF fibroblasts, as well as in lung cancer-associated fibroblasts, dermal fibroblasts and hepatic stellate cells. The inhibitory effect of ATP-competitive mTOR inhibition extended to other matrisome proteins implicated in the development of fibrosis and human disease relevance was demonstrated in live precision-cut IPF lung slices. Our data demonstrate that the mTORC1/4E-BP1 axis represents a critical signaling node during fibrogenesis with potential implications for the development of novel anti-fibrotic strategies.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colágeno/biossíntese , Fibroblastos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfoproteínas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular , Humanos , Fibrose Pulmonar Idiopática/etiologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Sirolimo , Serina-Treonina Quinases TOR/metabolismoRESUMO
This article reviews the British Thoracic Society Winter Meeting 2017 and summarises the new developments in scientific and clinical research across the breadth of respiratory medicine. The article discusses a number of symposia and selected abstract presentations from the meeting.
Assuntos
Pneumopatias , Pesquisa Biomédica , Humanos , Pneumopatias/diagnóstico , Pneumopatias/etiologia , Pneumopatias/terapia , Pneumologia , Fumar , Sociedades MédicasRESUMO
Helminth parasites defy immune exclusion through sophisticated evasion mechanisms, including activation of host immunosuppressive regulatory T (Treg) cells. The mouse parasite Heligmosomoides polygyrus can expand the host Treg population by secreting products that activate TGF-ß signalling, but the identity of the active molecule is unknown. Here we identify an H. polygyrus TGF-ß mimic (Hp-TGM) that replicates the biological and functional properties of TGF-ß, including binding to mammalian TGF-ß receptors and inducing mouse and human Foxp3+ Treg cells. Hp-TGM has no homology with mammalian TGF-ß or other members of the TGF-ß family, but is a member of the complement control protein superfamily. Thus, our data indicate that through convergent evolution, the parasite has acquired a protein with cytokine-like function that is able to exploit an endogenous pathway of immunoregulation in the host.
Assuntos
Mimetismo Molecular/imunologia , Nematospiroides dubius/imunologia , Nematospiroides dubius/patogenicidade , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/metabolismo , Sequência de Aminoácidos , Animais , Antígenos de Helmintos/química , Antígenos de Helmintos/genética , Antígenos de Helmintos/imunologia , Feminino , Proteínas de Helminto/química , Proteínas de Helminto/genética , Proteínas de Helminto/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Evasão da Resposta Imune/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mimetismo Molecular/genética , Nematospiroides dubius/genética , Ligação Proteica , Domínios Proteicos , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Infecções por Strongylida/imunologia , Infecções por Strongylida/parasitologiaRESUMO
This article reviews the British Thoracic Society Winter Meeting 2016 and highlights the new developments in scientific and clinical research across the breadth of respiratory medicine.
Assuntos
Pneumologia , Doenças Respiratórias , Sociedades Médicas , Humanos , LondresRESUMO
RATIONALE: Idiopathic pulmonary fibrosis (IPF) is the most rapidly progressive and fatal of all fibrotic conditions with no curative therapies. Common pathomechanisms between IPF and cancer are increasingly recognised, including dysfunctional pan-PI3 kinase (PI3K) signalling as a driver of aberrant proliferative responses. GSK2126458 is a novel, potent, PI3K/mammalian target of rapamycin (mTOR) inhibitor which has recently completed phase I trials in the oncology setting. Our aim was to establish a scientific and dosing framework for PI3K inhibition with this agent in IPF at a clinically developable dose. METHODS: We explored evidence for pathway signalling in IPF lung tissue and examined the potency of GSK2126458 in fibroblast functional assays and precision-cut IPF lung tissue. We further explored the potential of IPF patient-derived bronchoalveolar lavage (BAL) cells to serve as pharmacodynamic biosensors to monitor GSK2126458 target engagement within the lung. RESULTS: We provide evidence for PI3K pathway activation in fibrotic foci, the cardinal lesions in IPF. GSK2126458 inhibited PI3K signalling and functional responses in IPF-derived lung fibroblasts, inhibiting Akt phosphorylation in IPF lung tissue and BAL derived cells with comparable potency. Integration of these data with GSK2126458 pharmacokinetic data from clinical trials in cancer enabled modelling of an optimal dosing regimen for patients with IPF. CONCLUSIONS: Our data define PI3K as a promising therapeutic target in IPF and provide a scientific and dosing framework for progressing GSK2126458 to clinical testing in this disease setting. A proof-of-mechanism trial of this agent is currently underway. TRIAL REGISTRATION NUMBER: NCT01725139, pre-clinical.
Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Quinolinas/uso terapêutico , Sulfonamidas/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Proliferação de Células , Ensaios Clínicos como Assunto , Fibroblastos/metabolismo , Humanos , Fibrose Pulmonar Idiopática/patologia , Piridazinas , Transdução de Sinais , Resultado do TratamentoRESUMO
Idiopathic pulmonary fibrosis (IPF) is a progressive and invariably fatal disease with a median survival of less than three years from diagnosis. The last decade has seen an exponential increase in clinical trial activity in IPF and this in turn has led to important developments in the treatment of this terrible disease. Previous therapeutic approaches based around regimens including corticosteroids and azathioprine have, when tested in randomized clinical trials, been shown to be harmful in IPF. By contrast, compounds with anti-fibrotic actions have been shown to be beneficial. Subsequently, the novel anti-fibrotic agent pirfenidone has, in many parts of the world, become the first treatment ever to be licensed for use in IPF. This exciting development, coupled with ongoing clinical trials of a range of other novel compounds, is bringing hope to patients and their clinicians and raises the prospect that, in the future, it may become possible to successfully arrest the development of progressive scarring in IPF.
RESUMO
Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, fibrotic lung disease with no clear etiology and a paucity of therapeutic options. Nintedanib (previously known as BIBF 1120) is a tyrosine kinase receptor antagonist which inhibits a number of key receptors, including those for platelet derived growth factor (PDGF), vascular endothelial growth factor (VEGF), and fibroblast growth factor (FGF). These growth factors are profibrotic and each has been investigated as a potential standalone therapeutic target in IPF. Simultaneous inhibition of these receptors, with an analog of nintedanib, has proved to be effective in experimental animal models of pulmonary fibrosis. This observation, together with extensive safety and pharmacokinetic data from studies of nintedanib in malignancy, paved the way for the clinical development of this drug in IPF. The Phase IIb TOMORROW trial demonstrated that treatment with nintedanib may potentially slow decline in lung function, decrease the frequency of acute exacerbations, and improve quality of life in patients with IPF. While these observations are drawn from a single clinical trial, taken together with the preclinical data they suggest that nintedanib may yet become an important therapeutic option for individuals with IPF. The results of ongoing parallel, international, multicenter Phase III clinical trials are therefore eagerly awaited.