Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Dis ; 107(9): 2633-2642, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36734942

RESUMO

Fusarium wilt of spinach, caused by Fusarium oxysporum f. sp. spinaciae, is a significant limitation for producers of vegetative spinach and spinach seed crops during warm temperatures and/or on acid soils. Identification of isolates of F. oxysporum f. sp. spinaciae, and distinction of isolates of the two known races, entails time-intensive pathogenicity tests. In this study, two real-time PCR assays were developed: one for a candidate effector gene common to both races of F. oxysporum f. sp. spinaciae, and another for a candidate effector gene unique to isolates of race 2. The assays were specific to isolates of F. oxysporum f. sp. spinaciae (n = 44) and isolates of race 2 (n = 23), respectively. Neither assay amplified DNA from 10 avirulent isolates of F. oxysporum associated with spinach, 57 isolates of other formae speciales and Fusarium spp., or 7 isolates of other spinach pathogens. When the assays were used to detect DNA extracted from spinach plants infected with an isolate of race 1, race 2, or a 1:1 mixture of both races, the amount of target DNA detected increased with increasing severity of wilt. Plants infected with one or both isolates could be distinguished based on the ratio in copy number for each target locus. The real-time PCR assays enable rapid diagnosis of Fusarium wilt of spinach and will facilitate research on the epidemiology and management of this disease, as well as surveys on the prevalence of this understudied pathogen in regions of spinach and/or spinach seed production.


Assuntos
Fusarium , Fusarium/genética , Reação em Cadeia da Polimerase em Tempo Real , Spinacia oleracea/genética , Doenças das Plantas , Plantas
2.
Plant Dis ; 107(8): 2288-2295, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36724099

RESUMO

Early detection of causal pathogens is important to prevent crop loss from diseases. However, some diseases, such as soilborne diseases, are difficult to diagnose due to the absence of visible or characteristic symptoms. In the present study, the use of the Oxford Nanopore MinION sequencer as a molecular diagnostic tool was assessed due to its long-read sequencing capabilities and portability. Nucleotide samples (DNA or RNA) from potato field soils were sequenced and analyzed using a locally curated pathogen database, followed by identification via sequence mapping. We performed computational speed tests of three commonly used mapping/annotation tools (BLAST, BWA-BLAST, and BWA-GraphMap) and found BWA-GraphMap to be the fastest tool for local searching against our curated pathogen database. The data collected demonstrate the high potential of Nanopore sequencing as a minimally biased diagnostic tool for comprehensive pathogen detection in soil from potato fields. Our GraphMap-based MinION sequencing method could be useful as a predictive approach for disease management by identifying pathogens present in field soil prior to planting. Although this method still needs further experimentation with a larger sample size for practical use, the data analysis pipeline presented can be applied to other cropping systems and diagnostics for detecting multiple pathogens.


Assuntos
Sequenciamento por Nanoporos , Solanum tuberosum , Solo , Sequenciamento por Nanoporos/métodos
3.
Plant Dis ; 105(9): 2521-2530, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33439039

RESUMO

Soilborne Rhizoctonia, Microdochium, and Fusarium species are major causal agents of seedling and stem-base diseases of wheat. Currently, seed treatments are considered the most effective solution for their control. Rhizoctonia solani anastomosis groups (AGs) 2-1 and 5, R. cerealis, Microdochium, and Fusarium spp., were used in series of field experiments to determine their capability to cause soilborne and stem-base disease and to quantify their comparative losses in the establishment and yield of wheat. The effectiveness and response to seed treatment formulated with 10 g sedaxane and 5 g fludioxonil 100 kg-1 against these soilborne pathogens were also determined. Our results showed that damping-off caused by soilborne R. cerealis was associated with significant reductions in the emergence and establishment, resulting in stunted growth and low plant numbers. The pathogen also caused sharp eyespot associated with reductions in the ear partitioning index. R. solani AG 2-1 and AG 5 were weakly pathogenic and failed to cause significant damping-off, root rot, and stem-base disease in wheat. Fusarium graminearum and F. culmorum applied as soilborne inoculum failed to cause severe disease. Microdochium spp. caused brown foot rot disease and soilborne M. nivale reduced wheat emergence. Applications of sedaxane and fludioxonil increased plant emergence and reduced damping-off, early stem-base disease, and brown foot rot, thus providing protection against multiple soilborne pathogens. R. cerealis reduced the thousand grain weight by 3.6%, whereas seed treatment including fludioxonil and sedaxane against soilborne R. cerealis or M. nivale resulted in a 4% yield increase.


Assuntos
Fusarium , Rhizoctonia , Anilidas , Dioxóis , Doenças das Plantas/prevenção & controle , Pirazóis , Pirróis , Triticum
4.
J Vis Exp ; (132)2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29553557

RESUMO

On-site diagnosis of plant diseases can be a useful tool for growers for timely decisions enabling the earlier implementation of disease management strategies that reduce the impact of the disease. Presently in many diagnostic laboratories, the polymerase chain reaction (PCR), particularly real-time PCR, is considered the most sensitive and accurate method for plant pathogen detection. However, laboratory-based PCRs typically require expensive laboratory equipment and skilled personnel. In this study, soil-borne pathogens of potato are used to demonstrate the potential for on-site molecular detection. This was achieved using a rapid and simple protocol comprising of magnetic bead-based nucleic acid extraction, portable real-time PCR (fluorogenic probe-based assay). The portable real-time PCR approach compared favorably with a laboratory-based system, detecting as few as 100 copies of DNA from Spongospora subterranea. The portable real-time PCR method developed here can serve as an alternative to laboratory-based approaches and a useful on-site tool for pathogen diagnosis.


Assuntos
Patologia Vegetal , Reação em Cadeia da Polimerase em Tempo Real/métodos , Solo/química
5.
Plant Dis ; 102(1): 60-66, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30673447

RESUMO

Understanding the contribution of seed tuber- and soilborne inocula of Rhizoctonia solani AG 3-PT in causing potato disease epidemics is an important step in implementing effective management strategies for the pathogen. A 2-year study was conducted to evaluate the contribution of each source of inoculum using an integrative experimental approach combining field trials and molecular techniques. Two distinct sets of genetically marked isolates were used as seed tuberborne and soilborne inocula in a mark-release-recapture experiment. Disease assessments were done during tuber initiation and at tuber harvest. Both inoculum sources were found to be equally important in causing black scurf disease, whereas soilborne inocula appeared to be more important for root and stolon infection, and seedborne inocula contributed more to stem canker. However, seed tuber-transmitted genotypes accounted for 60% of the total recovered isolates when genotyped using three polymerase chain reaction restriction fragment length polymorphism markers. The changes in population structure of the experimental R. solani population over the course of the growing season and across two growing seasons were investigated using eight microsatellite markers. The populations at different sampling times were somewhat genetically differentiated, as indicated by Nei's gene diversity (0.24 to 0.27) and the fixation index (FST). The proportion of isolates with genotypes that differed from the inoculants ranged from 13 to 16% in 2013 and 2014, respectively, suggesting the possibility of emergence of new genotypes in the field. Because both soilborne and tuberborne inocula are critical, it is important to ensure the use of pathogen-free seed tubers to eliminate seed tuberborne inoculum and the introduction of new genotypes of R. solani for sustainable potato production in South Africa.


Assuntos
Variação Genética , Genótipo , Doenças das Plantas/microbiologia , Rhizoctonia/fisiologia , Solanum tuberosum/microbiologia , Tubérculos/microbiologia , Rhizoctonia/genética , Estações do Ano , Sementes/microbiologia , Microbiologia do Solo , África do Sul
6.
Fungal Biol ; 120(5): 701-10, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27109367

RESUMO

Rhizoctonia solani AG 3-PT is an important potato pathogen causing significant yield and quality losses in potato production. However, little is known about the levels of genetic diversity and structure of this pathogen in South Africa. A total of 114 R. solani AG 3-PT isolates collected from four geographic regions were analysed for genetic diversity and structure using eight microsatellite loci. Microsatellite analysis found high intra-population genetic diversity, population differentiation and evidence of recombination. A total of 78 multilocus genotypes were identified with few shared among populations. Low levels of clonality (13-39 %) and high levels of population differentiation were observed among populations. Most of the loci were in Hardy-Weinberg equilibrium and all four populations showed evidence of a mixed reproductive mode of both clonality and recombination. The PCoA clustering method revealed genetically distinct geographic populations of R. solani AG 3-PT in South Africa. This study showed that populations of R. solani AG 3-PT in South Africa are genetically differentiated and disease management strategies should be applied accordingly. This is the first study of the population genetics of R. solani AG 3-PT in South Africa and results may help to develop knowledge-based disease management strategies.


Assuntos
Variação Genética , Genótipo , Rhizoctonia/classificação , Rhizoctonia/genética , Solanum tuberosum/microbiologia , DNA Fúngico/genética , Repetições de Microssatélites , Recombinação Genética , Rhizoctonia/isolamento & purificação , África do Sul
7.
Fungal Biol ; 119(11): 994-1006, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26466875

RESUMO

The Alternaria alternata species group is ubiquitous in the environment acting as saprotrophs, human allergens, and plant pathogens. Many morphological species have been described within the group and it is unclear whether these represent re-descriptions of the same species or discrete evolutionary taxa. Sequencing of five loci identified three major lineages within the A. alternata species group. These loci included three new phylogenetic loci (TMA22, PGS1, and REV3) identified as highly variable based on publically available genome sequence data for Dothideomycete species. Lineages were identified as A. alternata ssp. arborescens, A. alternata ssp. tenuissima, and A. alternata ssp. gaisen in accordance with the placement of reference isolates. The phylogenetic results were supported by morphological analysis, which differentiated strains in A. alternata ssp. arborescens and A. alternata ssp. tenuissima and also aligned with previous morphological species descriptions for A. arborescens and A. tenuissima. However, phylogenetic analysis placed the morphologically described species A. alternata and A. mali within the A. alternata ssp. tenuissima and did not support them as discrete taxa. As A. alternata are of phytosanitary importance, the molecular loci used in this study offer new opportunities for molecular identification of isolates by national plant protection organizations.


Assuntos
Alternaria/classificação , Variação Genética , Filogenia , Alternaria/citologia , Alternaria/genética , Análise por Conglomerados , Loci Gênicos , Humanos , Microscopia , Dados de Sequência Molecular , Tipagem de Sequências Multilocus , Análise de Sequência de DNA , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA