RESUMO
BACKGROUND: Disorders of gastric function are highly prevalent, but diagnosis often remains symptom-based and inconclusive. Body surface gastric mapping is an emerging diagnostic solution, but current approaches lack scalability and are cumbersome and clinically impractical. We present a novel scalable system for non-invasively mapping gastric electrophysiology in high-resolution (HR) at the body surface. METHODS: The system comprises a custom-designed stretchable high-resolution "peel-and-stick" sensor array (8 × 8 pre-gelled Ag/AgCl electrodes at 2 cm spacing; area 225 cm2 ), wearable data logger with custom electronics incorporating bioamplifier chips, accelerometer and Bluetooth synchronized in real-time to an App with cloud connectivity. Automated algorithms filter and extract HR biomarkers including propagation (phase) mapping. The system was tested in a cohort of 24 healthy subjects to define reliability and characterize features of normal gastric activity (30 m fasting, standardized meal, and 4 h postprandial). KEY RESULTS: Gastric mapping was successfully achieved non-invasively in all cases (16 male; 8 female; aged 20-73 years; BMI 24.2 ± 3.5). In all subjects, gastric electrophysiology and meal responses were successfully captured and quantified non-invasively (mean frequency 2.9 ± 0.3 cycles per minute; peak amplitude at mean 60 m postprandially with return to baseline in <4 h). Spatiotemporal mapping showed regular and consistent wave activity of mean direction 182.7° ± 73 (74.7% antegrade, 7.8% retrograde, 17.5% indeterminate). CONCLUSIONS AND INFERENCES: BSGM is a new diagnostic tool for assessing gastric function that is scalable and ready for clinical applications, offering several biomarkers that are improved or new to gastroenterology practice.
Assuntos
Motilidade Gastrointestinal , Estômago , Humanos , Masculino , Feminino , Reprodutibilidade dos Testes , Motilidade Gastrointestinal/fisiologia , Estômago/fisiologia , Eletrodos , EletrônicaRESUMO
BACKGROUND: Body surface gastric mapping (BSGM) is a new clinical tool for gastric motility diagnostics, providing high-resolution data on gastric myoelectrical activity. Artifact contamination was a key challenge to reliable test interpretation in traditional electrogastrography. This study aimed to introduce and validate an automated artifact detection and rejection system for clinical BSGM applications. METHODS: Ten patients with chronic gastric symptoms generated a variety of artifacts according to a standardized protocol (176 recordings) using a commercial BSGM system (Alimetry, New Zealand). An automated artifact detection and rejection algorithm was developed, and its performance was compared with a reference standard comprising consensus labeling by 3 analysis experts, followed by comparison with 6 clinicians (3 untrained and 3 trained in artifact detection). Inter-rater reliability was calculated using Fleiss' kappa. KEY RESULTS: Inter-rater reliability was 0.84 (95% CI:0.77-0.90) among experts, 0.76 (95% CI:0.68-0.83) among untrained clinicians, and 0.71 (95% CI:0.62-0.79) among trained clinicians. The sensitivity and specificity of the algorithm against experts was 96% (95% CI:91%-100%) and 95% (95% CI:90%-99%), respectively, vs 77% (95% CI:68%-85%) and 99% (95% CI:96%-100%) against untrained clinicians, and 97% (95% CI:92%-100%) and 88% (95% CI:82%-94%) against trained clinicians. CONCLUSIONS & INFERENCES: An automated artifact detection and rejection algorithm was developed showing >95% sensitivity and specificity vs expert markers. This algorithm overcomes an important challenge in the clinical translation of BSGM and is now being routinely implemented in patient test interpretations.
Assuntos
Algoritmos , Artefatos , Mapeamento Potencial de Superfície Corporal , Eletromiografia , Humanos , Reprodutibilidade dos TestesRESUMO
BACKGROUND: Functional gastroduodenal disorders include functional dyspepsia, chronic nausea and vomiting syndromes, and gastroparesis. These disorders are common, but their overlapping symptomatology poses challenges to diagnosis, research, and therapy. This study aimed to introduce and validate a standardized patient symptom-logging system and App to aid in the accurate reporting of gastroduodenal symptoms for clinical and research applications. METHODS: The system was implemented in an iOS App including pictographic symptom illustrations, and two validation studies were conducted. To assess convergent and concurrent validity, a diverse cohort with chronic gastroduodenal symptoms undertook App-based symptom logging for 4 h after a test meal. Individual and total post-prandial symptom scores were averaged and correlated against two previously validated instruments: PAGI-SYM (for convergent validity) and PAGI-QOL (for concurrent validity). To assess face and content validity, semi-structured qualitative interviews were conducted with patients. KEY RESULTS: App-based symptom reporting demonstrated robust convergent validity with PAGI-SYM measures of nausea (rS =0.68), early satiation (rS =0.55), bloating (rS =0.48), heartburn (rS =0.47), upper gut pain (rS =0.40), and excessive fullness (rS =0.40); all p < 0.001 (n = 79). The total App-reported Gastric Symptom Burden Score correlated positively with PAGI-SYM (rS =0.56; convergent validity; p < 0.001), and negatively with PAGI-QOL (rS = -0.34; concurrent validity; p = 0.002). Interviews demonstrated that the pictograms had adequate face and content validity. CONCLUSIONS AND INFERENCES: The continuous patient symptom-logging App demonstrated robust convergent, concurrent, face, and content validity when used within a 4-h post-prandial test protocol. The App will enable standardized symptom reporting and is anticipated to provide utility in both research and clinical practice.
Assuntos
Duodenopatias , Gastroparesia , Aplicativos Móveis , Esvaziamento Gástrico , Gastroparesia/diagnóstico , Humanos , Náusea , Qualidade de Vida , Índice de Gravidade de Doença , Inquéritos e QuestionáriosRESUMO
Reactive oxygen species (ROS) generated during exercise are considered integral for the health-promoting effects of exercise. However, the precise mechanisms by which exercise and ROS promote metabolic health remain unclear. Here, we demonstrate that skeletal muscle NADPH oxidase 4 (NOX4), which is induced after exercise, facilitates ROS-mediated adaptive responses that promote muscle function, maintain redox balance, and prevent the development of insulin resistance. Conversely, reductions in skeletal muscle NOX4 in aging and obesity contribute to the development of insulin resistance. NOX4 deletion in skeletal muscle compromised exercise capacity and antioxidant defense and promoted oxidative stress and insulin resistance in aging and obesity. The abrogated adaptive mechanisms, oxidative stress, and insulin resistance could be corrected by deleting the H2O2-detoxifying enzyme GPX-1 or by treating mice with an agonist of NFE2L2, the master regulator of antioxidant defense. These findings causally link NOX4-derived ROS in skeletal muscle with adaptive responses that promote muscle function and insulin sensitivity.
RESUMO
Neutrophils accumulate in insulin-sensitive tissues during obesity and may play a role in impairing insulin sensitivity. The major serine protease expressed by neutrophils is neutrophil elastase (NE), which is inhibited endogenously by α1-antitrypsin A (A1AT). We investigated the effect of exogenous (A1AT) treatment on diet-induced metabolic dysfunction. Male C57Bl/6j mice fed a chow or a high-fat diet (HFD) were randomized to receive intraperitoneal injections three times weekly of either Prolastin (human A1AT; 2 mg) or vehicle (PBS) for 10 wk. Prolastin treatment did not affect plasma NE concentration, body weight, glucose tolerance, or insulin sensitivity in chow-fed mice. In contrast, Prolastin treatment attenuated HFD-induced increases in plasma and white adipose tissue (WAT) NE without affecting circulatory neutrophil levels or increases in body weight. Prolastin-treated mice fed a HFD had improved insulin sensitivity, as assessed by insulin tolerance test, and this was associated with higher insulin-dependent IRS-1 (insulin receptor substrate) and AktSer473 phosphorylation, and reduced inflammation markers in WAT but not liver or muscle. In 3T3-L1 adipocytes, Prolastin reversed recombinant NE-induced impairment of insulin-stimulated glucose uptake and IRS-1 phosphorylation. Furthermore, PDGF mediated p-AktSer473 activation and glucose uptake (which is independent of IRS-1) was not affected by recombinant NE treatment. Collectively, our findings suggest that NE infiltration of WAT during metabolic overload contributes to insulin resistance by impairing insulin-induced IRS-1 signaling.NEW & NOTEWORTHY Neutrophils accumulate in peripheral tissues during obesity and are critical coordinators of tissue inflammatory responses. Here, we provide evidence that inhibition of the primary neutrophil protease, neutrophil elastase, with α1-antitrypsin A (A1AT) can improve insulin sensitivity and glucose homeostasis of mice fed a high-fat diet. This was attributed to improved insulin-induced IRS-1 phosphorylation in white adipose tissue and provides further support for a role of neutrophils in mediating diet-induced peripheral tissue insulin resistance.
Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Dieta Hiperlipídica , Proteínas Substratos do Receptor de Insulina/metabolismo , Resistência à Insulina , Insulina/metabolismo , Elastase de Leucócito/antagonistas & inibidores , alfa 1-Antitripsina/farmacologia , Células 3T3-L1 , Tecido Adiposo Branco/metabolismo , Animais , Peso Corporal , Proteínas Substratos do Receptor de Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Transdução de SinaisRESUMO
Acute exercise, and in particular aerobic exercise, increases skeletal muscle energy demand causing mitochondrial stress, and mitochondrial-related adaptations which are a hallmark of exercise training. Given that mitochondria are central players in the exercise response, it is imperative that they have networks that can communicate their status both intra- and inter-cellularly. Peptides encoded by short open-reading frames within mitochondrial DNA, mitochondrial-derived peptides (MDPs), have been suggested to form a newly recognised branch of this retrograde signalling cascade that contribute to coordinating the adaptive response to regular exercise. Here we summarise the recent evidence that acute high intensity exercise in humans can increase concentrations of the MDPs humanin and MOTS-c in skeletal muscle and plasma, and speculate on the mechanisms controlling MDP responses to exercise stress. Evidence that exercise training results in chronic changes in MDP expression within tissues and the circulation is conflicting and may depend on the mode, duration, intensity of training plan and participant characteristics. Further research is required to define the effect of these variables on MDPs and to determine whether MDPs other than MOTS-c have exercise mimetic properties. MOTS-c treatment of young and aged mice improves exercise capacity/performance and leads to adaptions that are similar to that of being physically active (weight loss, increased antioxidant capacity and improved insulin sensitivity), however, studies utilising a MOTS-c inactivating genetic variant or combination of exercise + MOTS-c treatment in mice suggest that there are distinct and overlapping pathways through which exercise and MOTS-c evoke metabolic benefits. Overall, MOTS-c, and potentially other MDPs, may be exercise-sensitive myokines and further work is required to define inter- and intra-tissue targets in an exercise context.
Assuntos
Mitocôndrias , Humanos , PeptídeosRESUMO
Mitochondrial-derived peptides (MDPs) are encoded by the mitochondrial genome and hypothesised to form part of a retrograde signalling network that modulates adaptive responses to metabolic stress. To understand how metabolic stress regulates MDPs in humans we assessed the association between circulating MOTS-c and SHLP2 and components of metabolic syndrome (MS), as well as depot-specific fat mass in participants without overt type 2 diabetes or cardiovascular disease. One-hundred and twenty-five Chinese participants (91 male, 34 female) had anthropometry, whole body dual-energy X-ray absorptiometry scans and fasted blood samples analysed. Chinese female participants and an additional 34 European Caucasian female participants also underwent magnetic resonance imaging and spectroscopy (MRI/S) for visceral, pancreatic and liver fat quantification. In Chinese participants (age = 41 ± 1 years, BMI = 27.8 ± 3.9 kg/m2), plasma MOTS-c (315 ± 27 pg/ml) and SHLP2 (1393 ± 82 pg/ml) were elevated in those with MS (n = 26). While multiple components of the MS sequelae positively associated with both MOTS-c and SHLP2, including blood pressure, fasting plasma glucose and triglycerides, the most significant of these was waist circumference (p < 0.0001). Android fat had a greater effect on increasing plasma MOTS-c (p < 0.004) and SHLP2 (p < 0.009) relative to whole body fat. Associations with MRI/S parameters corrected for total body fat mass revealed that liver fat positively associated with plasma MOTS-c and SHLP2 and visceral fat with SHLP2. Consistent with hepatic stress being a driver of circulating MDP concentrations, plasma MOTS-c and SHLP2 were higher in participants with elevated liver damage markers and in male C57Bl/6j mice fed a diet that induces hepatic lipid accumulation and damage. Our findings provide evidence that in the absence of overt type 2 diabetes, components of the MS positively associated with levels of MOTS-c and SHLP2 and that android fat, in particular liver fat, is a primary driver of these associations. MOTS-c and SHLP2 have previously been shown to have cyto- and metabolo-protective properties, therefore we suggest that liver stress may be a mitochondrial peptide signal, and that mitochondrial peptides are part of a hepatic centric-hormetic response intended to restore metabolic balance.
Assuntos
Gorduras/metabolismo , Metiltestosterona/metabolismo , Proteínas Mitocondriais/metabolismo , Adolescente , Adulto , Idoso , Povo Asiático , Feminino , Humanos , Fígado/química , Fígado/metabolismo , Masculino , Pessoa de Meia-Idade , Proteínas Mitocondriais/sangue , Adulto JovemRESUMO
KEY POINTS: Loss of ß-catenin impairs in vivo and isolated muscle exercise/contraction-stimulated glucose uptake. ß-Catenin is required for exercise-induced skeletal muscle actin cytoskeleton remodelling. ß-Catenin675 phosphorylation during exercise may be intensity dependent. ABSTRACT: The conserved structural protein ß-catenin is an emerging regulator of vesicle trafficking in multiple tissues and supports insulin-stimulated glucose transporter 4 (GLUT4) translocation in skeletal muscle by facilitating cortical actin remodelling. Actin remodelling may be a convergence point between insulin and exercise/contraction-stimulated glucose uptake. Here we investigated whether ß-catenin is involved in regulating exercise/contraction-stimulated glucose uptake. We report that the muscle-specific deletion of ß-catenin induced in adult mice (BCAT-mKO) impairs both exercise- and contraction (isolated muscle)-induced glucose uptake without affecting running performance or canonical exercise signalling pathways. Furthermore, high intensity exercise in mice and contraction of myotubes and isolated muscles led to the phosphorylation of ß-cateninS675 , and this was impaired by Rac1 inhibition. Moderate intensity exercise in control and Rac1 muscle-specific knockout mice did not induce muscle ß-cateninS675 phosphorylation, suggesting exercise intensity-dependent regulation of ß-cateninS675 . Introduction of a non-phosphorylatable S675A mutant of ß-catenin into myoblasts impaired GLUT4 translocation and actin remodelling stimulated by carbachol, a Rac1 and RhoA activator. Exercise-induced increases in cross-sectional phalloidin staining (F-actin marker) of gastrocnemius muscle was impaired in muscle from BCAT-mKO mice. Collectively our findings suggest that ß-catenin is required for optimal glucose transport in muscle during exercise/contraction, potentially via facilitating actin cytoskeleton remodelling.
Assuntos
Glucose , beta Catenina , Animais , Estudos Transversais , Transportador de Glucose Tipo 4 , Insulina/metabolismo , Camundongos , Contração Muscular , Músculo Esquelético/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismoRESUMO
Healthy aging can be promoted by enhanced metabolic fitness and physical capacity. Mitochondria are chief metabolic organelles with strong implications in aging that also coordinate broad physiological functions, in part, using peptides that are encoded within their independent genome. However, mitochondrial-encoded factors that actively regulate aging are unknown. Here, we report that mitochondrial-encoded MOTS-c can significantly enhance physical performance in young (2 mo.), middle-age (12 mo.), and old (22 mo.) mice. MOTS-c can regulate (i) nuclear genes, including those related to metabolism and proteostasis, (ii) skeletal muscle metabolism, and (iii) myoblast adaptation to metabolic stress. We provide evidence that late-life (23.5 mo.) initiated intermittent MOTS-c treatment (3x/week) can increase physical capacity and healthspan in mice. In humans, exercise induces endogenous MOTS-c expression in skeletal muscle and in circulation. Our data indicate that aging is regulated by genes encoded in both of our co-evolved mitochondrial and nuclear genomes.
Assuntos
Envelhecimento/genética , Homeostase/fisiologia , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/metabolismo , Adulto , Animais , Linhagem Celular , Núcleo Celular , Regulação da Expressão Gênica , Humanos , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/metabolismo , Mioblastos/metabolismo , Estresse Fisiológico , Adulto JovemRESUMO
Mitochondrial-derived peptides (MDPs) are small bioactive peptides encoded by short open-reading frames (sORF) in mitochondrial DNA that do not necessarily have traditional hallmarks of protein-coding genes. To date, eight MDPs have been identified, all of which have been shown to have various cyto- or metaboloprotective properties. The 12S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas the other seven MDPs [humanin and small humanin-like peptides (SHLP) 1-6] are encoded by the 16S ribosomal RNA gene. Here, we review the evidence that endogenous MDPs are sensitive to changes in metabolism, showing that metabolic conditions like obesity, diabetes, and aging are associated with lower circulating MDPs, whereas in humans muscle MDP expression is upregulated in response to stress that perturbs the mitochondria like exercise, some mtDNA mutation-associated diseases, and healthy aging, which potentially suggests a tissue-specific response aimed at restoring cellular or mitochondrial homeostasis. Consistent with this, treatment of rodents with humanin, MOTS-c, and SHLP2 can enhance insulin sensitivity and offer protection against a range of age-associated metabolic disorders. Furthermore, assessing how mtDNA variants alter the functions of MDPs is beginning to provide evidence that MDPs are metabolic signal transducers in humans. Taken together, MDPs appear to form an important aspect of a retrograde signaling network that communicates mitochondrial status with the wider cell and to distal tissues to modulate adaptative responses to metabolic stress. It remains to be fully determined whether the metaboloprotective properties of MDPs can be harnessed into therapies for metabolic disease.
Assuntos
Metabolismo Energético/fisiologia , Mitocôndrias/metabolismo , Peptídeos/metabolismo , Animais , Metabolismo Energético/genética , Humanos , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peptídeos/genéticaRESUMO
Humanin is a small regulatory peptide encoded within the 16S ribosomal RNA gene (MT-RNR2) of the mitochondrial genome that has cellular cyto- and metabolo-protective properties similar to that of aerobic exercise training. Here we investigated whether acute high-intensity interval exercise or short-term high-intensity interval training (HIIT) impacted skeletal muscle and plasma humanin levels. Vastus lateralis muscle biopsies and plasma samples were collected from young healthy untrained men (n = 10, 24.5 ± 3.7 yr) before, immediately following, and 4 h following the completion of 10 × 60 s cycle ergometer bouts at VÌo2peak power output (untrained). Resting and postexercise sampling was also performed after six HIIT sessions (trained) completed over 2 wk. Humanin protein abundance in muscle and plasma were increased following an acute high-intensity exercise bout. HIIT trended (P = 0.063) to lower absolute humanin plasma levels, without effecting the response in muscle or plasma to acute exercise. A similar response in the plasma was observed for the small humanin-like peptide 6 (SHLP6), but not SHLP2, indicating selective regulation of peptides encoded by MT-RNR2 gene. There was a weak positive correlation between muscle and plasma humanin levels, and contraction of isolated mouse EDL muscle increased humanin levels ~4-fold. The increase in muscle humanin levels with acute exercise was not associated with MT-RNR2 mRNA or humanin mRNA levels (which decreased following acute exercise). Overall, these results suggest that humanin is an exercise-sensitive mitochondrial peptide and acute exercise-induced humanin responses in muscle are nontranscriptionally regulated and may partially contribute to the observed increase in plasma concentrations.NEW & NOTEWORTHY Small regulatory peptides encoded within the mitochondrial genome (mitochondrial derived peptides) have been shown to have cellular cyto- and metabolo-protective roles that parallel those of exercise. Here we provide evidence that humanin and SHLP6 are exercise-sensitive mitochondrial derived peptides. Studies to determine whether mitochondrial derived peptides play a role in regulating exercise-induced adaptations are warranted.
Assuntos
Treinamento Intervalado de Alta Intensidade , Peptídeos e Proteínas de Sinalização Intracelular , Músculo Esquelético , Adulto , Animais , Genes de RNAr , Humanos , Masculino , Camundongos , Peptídeos , Adulto JovemRESUMO
Mitochondria putatively regulate the aging process, in part, through the small regulatory peptide, mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) that is encoded by the mitochondrial genome. Here we investigated the regulation of MOTS-c in the plasma and skeletal muscle of healthy aging men. Circulating MOTS-c reduced with age, but older (70-81 y) and middle-aged (45-55 y) men had ~1.5-fold higher skeletal muscle MOTS-c expression than young (18-30 y). Plasma MOTS-c levels only correlated with plasma in young men, was associated with markers of slow-type muscle, and associated with improved muscle quality in the older group (maximal leg-press load relative to thigh cross-sectional area). Using small mRNA assays we provide evidence that MOTS-c transcription may be regulated independently of the full length 12S rRNA gene in which it is encoded, and expression is not associated with antioxidant response element (ARE)-related genes as previously seen in culture. Our results suggest that plasma and muscle MOTS-c are differentially regulated with aging, and the increase in muscle MOTS-c expression with age is consistent with fast-to-slow type muscle fiber transition. Further research is required to determine the molecular targets of endogenous MOTS-c in human muscle but they may relate to factors that maintain muscle quality.
Assuntos
Envelhecimento Saudável/metabolismo , Proteínas Mitocondriais/sangue , Músculo Esquelético/metabolismo , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Peptídeos/metabolismo , RNA Ribossômico , Fatores de Transcrição/metabolismoRESUMO
One of the main sources of reactive oxygen species (ROS) in skeletal muscle is the mitochondria. Prolonged or very high ROS exposure causes oxidative damage, which can be deleterious to muscle function, and as such, there is growing interest in targeting antioxidants to the mitochondria in an effort to prevent or treat muscle dysfunction and damage associated with disease and injury. Paradoxically, however, ROS also act as important signalling molecules in controlling cellular homeostasis, and therefore caution must be taken when supplementing with antioxidants. It is possible that mitochondria-targeted antioxidants may limit oxidative stress without suppressing ROS from non-mitochondrial sources that might be important for cell signalling. Therefore, in this review, we summarise literature relating to the effect of mitochondria-targeted antioxidants on skeletal muscle function. Overall, mitochondria-targeted antioxidants appear to exert beneficial effects on mitochondrial capacity and function, insulin sensitivity and age-related declines in muscle function. However, it seems that this is dependent on the type of mitochondrial-trageted antioxidant employed, and its specific mechanism of action, rather than simply targeting to the mitochondria.
RESUMO
MicroRNAs (miRNAs) regulate gene expression via transcript degradation and translational inhibition, and they may also function as long distance signaling molecules. Circulatory miRNAs are either protein-bound or packaged within vesicles (exosomes). Ten young men (24.6 ± 4.0 yr) underwent a single bout of high-intensity interval cycling exercise. Vastus lateralis biopsies and plasma were collected immediately before and after exercise, as well as 4 h following the exercise bout. Twenty-nine miRNAs previously reported to be regulated by acute exercise were assessed within muscle, venous plasma, and enriched circulatory exosomes via qRT-PCR. Of the 29 targeted miRNAs, 11 were altered in muscle, 8 in plasma, and 9 in the exosome fraction. Although changes in muscle and plasma expression were bidirectional, all regulated exosomal miRNAs increased following exercise. Three miRNAs were altered in all three sample pools (miR-1-3p, -16-5p, and -222-3p), three in both muscle and plasma (miR-21-5p, -134-3p, and -107), three in both muscle and exosomes (miR-23a-3p, -208a-3p, and -150-5p), and three in both plasma and exosomes (miR-486-5p, -126-3p, and -378a-5p). There was a marked discrepancy between the observed alterations between sample pools. A subset of exosomal miRNAs increased in abundance following exercise, suggesting an exercise-induced release of exosomes enriched in specific miRNAs. The uniqueness of the exosomal miRNA response suggests its relevance as a sample pool that needs to be further explored in better understanding biological functions.