Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 170(3)2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38446018

RESUMO

The genetic background between strains of a single species and within a single strain lineage can significantly impact the expression of biological traits. This genetic variation may also reshape epigenetic mechanisms of cell identity and environmental responses that are controlled by interconnected transcriptional networks and chromatin-modifying enzymes. Histone deacetylases, including sirtuins, are critical regulators of chromatin state and have been directly implicated in governing the phenotypic transition between the 'sterile' white state and the mating-competent opaque state in Candida albicans, a common fungal commensal and pathogen of humans. Here, we found that a previously ambiguous role for the sirtuin SIR2 in C. albicans phenotypic switching is likely linked to the genetic background of mutant strains produced in the RM lineage of SC5314. SIR2 mutants in a specific lineage of BWP17 displayed increased frequencies of switching to the opaque state compared to the wild-type. Loss of SIR2 in other SC5314-derived backgrounds, including newly constructed BWP17 sir2Δ/Δ mutants, failed to recapitulate the increased white-opaque switching frequencies observed in the original BWP17 sir2Δ/Δ mutant background. Whole-genome sequencing revealed the presence of multiple imbalanced chromosomes and large loss of heterozygosity tracts that likely interact with SIR2 to increase phenotypic switching in this BWP17 sir2Δ/Δ mutant lineage. These genomic changes are not found in other SC5314-derived sir2Δ/Δ mutants that do not display increased opaque cell formation. Thus, complex karyotypes can emerge during strain construction that modify mutant phenotypes and highlight the importance of validating strain background when interpreting phenotypes.


Assuntos
Candida albicans , Cromatina , Humanos , Candida albicans/genética , Epigênese Genética , Redes Reguladoras de Genes , Fenótipo
2.
PLoS Genet ; 19(12): e1011082, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38048294

RESUMO

The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, ß- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOß2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloß2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.


Assuntos
Candida albicans , Proteínas Fúngicas , Humanos , Candida albicans/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Sistemas CRISPR-Cas/genética , Mutagênese , Fenótipo , Regulação Fúngica da Expressão Gênica , Deleção de Genes
3.
mBio ; 12(2)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879584

RESUMO

The human commensal and opportunistic fungal pathogen Candida albicans displays extensive genetic and phenotypic variation across clinical isolates. Here, we performed RNA sequencing on 21 well-characterized isolates to examine how genetic variation contributes to gene expression differences and to link these differences to phenotypic traits. C. albicans adapts primarily through clonal evolution, and yet hierarchical clustering of gene expression profiles in this set of isolates did not reproduce their phylogenetic relationship. Strikingly, strain-specific gene expression was prevalent in some strain backgrounds. Association of gene expression with phenotypic data by differential analysis, linear correlation, and assembly of gene networks connected both previously characterized and novel genes with 23 C. albicans traits. Construction of de novo gene modules produced a gene atlas incorporating 67% of C. albicans genes and revealed correlations between expression modules and important phenotypes such as systemic virulence. Furthermore, targeted investigation of two modules that have novel roles in growth and filamentation supported our bioinformatic predictions. Together, these studies reveal widespread transcriptional variation across C. albicans isolates and identify genetic and epigenetic links to phenotypic variation based on coexpression network analysis.IMPORTANCE Infectious fungal species are often treated uniformly despite clear evidence of genotypic and phenotypic heterogeneity being widespread across strains. Identifying the genetic basis for this phenotypic diversity is extremely challenging because of the tens or hundreds of thousands of variants that may distinguish two strains. Here, we use transcriptional profiling to determine differences in gene expression that can be linked to phenotypic variation among a set of 21 Candida albicans isolates. Analysis of this transcriptional data set uncovered clear trends in gene expression characteristics for this species and new genes and pathways that were associated with variation in pathogenic processes. Direct investigation confirmed functional predictions for a number of new regulators associated with growth and filamentation, demonstrating the utility of these approaches in linking genes to important phenotypes.


Assuntos
Candida albicans/genética , Candida albicans/patogenicidade , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica/genética , Variação Genética , Fenótipo , Candidíase/microbiologia , Genoma Fúngico , Genótipo , Humanos , Filogenia , Análise de Sequência de RNA , Virulência
4.
J Vis Exp ; (141)2018 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-30507902

RESUMO

Candida species are common fungal commensals of humans colonizing the skin, mucosal surfaces, and gastrointestinal tract. Under certain conditions, Candida can overgrow their natural niches resulting in debilitating mucosal infections as well as life-threatening systemic infections, which are a major focus of investigation due to their associated high mortality rates. Animal models of disseminated infection exist for studying disease progression and dissecting the characteristics of Candida pathogenicity. Of these, the Galleria mellonella waxworm infection model provides a cost-effective experimental tool for high-throughput investigations of systemic virulence. Many other bacterial and eukaryotic infectious agents have been effectively studied in G. mellonella to understand pathogenicity, making it a widely accepted model system. Yet, variation in the method used to infect G. mellonella can alter phenotypic outcomes and complicate interpretation of the results. Here, we outline the benefits and drawbacks of the waxworm model to study systemic Candida pathogenesis and detail an approach to improve reproducibility. Our results highlight the range of mortality kinetics in G. mellonella and describe the variables which can modulate these kinetics. Ultimately, this method stands as an ethical, rapid, and cost-effective approach to study virulence in a model of disseminated candidiasis.


Assuntos
Candidíase/microbiologia , Candidíase/patologia , Modelos Animais de Doenças , Larva/microbiologia , Animais , Candida/isolamento & purificação , Humanos , Lepidópteros , Mariposas/microbiologia , Reprodutibilidade dos Testes
5.
PLoS Pathog ; 13(11): e1006707, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29136651

RESUMO

Recognition of specific cell surface glycans, mediated by the VP8* domain of the spike protein VP4, is the essential first step in rotavirus (RV) infection. Due to lack of direct structural information of virus-ligand interactions, the molecular basis of ligand-controlled host ranges of the major human RVs (P[8] and P[4]) in P[II] genogroup remains unknown. Here, through characterization of a minor P[II] RV (P[19]) that can infect both animals (pigs) and humans, we made an important advance to fill this knowledge gap by solving the crystal structures of the P[19] VP8* in complex with its ligands. Our data showed that P[19] RVs use a novel binding site that differs from the known ones of other genotypes/genogroups. This binding site is capable of interacting with two types of glycans, the mucin core and type 1 histo-blood group antigens (HBGAs) with a common GlcNAc as the central binding saccharide. The binding site is apparently shared by other P[II] RVs and possibly two genotypes (P[10] and P[12]) in P[I] as shown by their highly conserved GlcNAc-interacting residues. These data provide strong evidence of evolutionary connections among these human and animal RVs, pointing to a common ancestor in P[I] with a possible animal host origin. While the binding properties to GlcNAc-containing saccharides are maintained, changes in binding to additional residues, such as those in the polymorphic type 1 HBGAs may occur in the course of RV evolution, explaining the complex P[II] genogroup that mainly causes diseases in humans but also in some animals.


Assuntos
Especificidade de Hospedeiro/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Infecções por Rotavirus/virologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/genética , Zoonoses/virologia , Animais , Sítios de Ligação , Variação Genética , Genótipo , Humanos , Polissacarídeos/metabolismo , Rotavirus/química , Rotavirus/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA