Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
bioRxiv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38979188

RESUMO

Recent malaria drug discovery approaches have been extensively focused on the development of oral, smallmolecule inhibitors for disease treatment whereas parenteral routes of administration have been avoided due to limitations in deploying a shelf-stable injectable even though it could be dosed less frequently. However, an updated target candidate profile from Medicines for Malaria Venture (MMV) and stakeholders have advocated for long-acting injectable chemopreventive agents as an important interventive tool to improve malaria prevention. Here, we present strategies for the development of a long-acting, intramuscular, injectable atovaquone prophylactic therapy. We have generated three prodrug approaches that are contrasted by their differential physiochemical properties and pharmacokinetic profiles: mCBK068, a docosahexaenoic acid ester of atovaquone formulated in sesame oil, mCKX352, a heptanoic acid ester of atovaquone formulated as a solution in sesame oil, and mCBE161, an acetic acid ester of atovaquone formulated as an aqueous suspension. As a result, from a single 20 mg/kg intramuscular injection, mCKX352 and mCBE161 maintain blood plasma exposure of atovaquone above the minimal efficacious concentration for >70 days and >30 days, respectively, in cynomolgus monkeys. The differences in plasma exposure are reflective of the prodrug strategy, which imparts altered chemical properties that ultimately influence aqueous solubility and depot release kinetics. On the strength of the pharmacokinetic and safety profiles, mCBE161 is being advanced as a first-in-class clinical candidate for first-in-human trials.

2.
bioRxiv ; 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39005341

RESUMO

In efforts towards eliminating malaria, a discovery program was initiated to identify a novel antimalarial using KAF156 as a starting point. Following the most recent TCP/TPP guidelines, we have identified mCMQ069 with a predicted single oral dose for treatment (∼40-106 mg) and one-month chemoprevention (∼96-216 mg). We have improved unbound MPC and predicted human clearance by 18-fold and 10-fold respectively when compared to KAF156.

4.
J Med Chem ; 67(4): 2369-2378, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38335279

RESUMO

There remains a need to develop novel SARS-CoV-2 therapeutic options that improve upon existing therapies by an increased robustness of response, fewer safety liabilities, and global-ready accessibility. Functionally critical viral main protease (Mpro, 3CLpro) of SARS-CoV-2 is an attractive target due to its homology within the coronaviral family, and lack thereof toward human proteases. In this disclosure, we outline the advent of a novel SARS-CoV-2 3CLpro inhibitor, CMX990, bearing an unprecedented trifluoromethoxymethyl ketone warhead. Compared with the marketed drug nirmatrelvir (combination with ritonavir = Paxlovid), CMX990 has distinctly differentiated potency (∼5× more potent in primary cells) and human in vitro clearance (>4× better microsomal clearance and >10× better hepatocyte clearance), with good in vitro-to-in vivo correlation. Based on its compelling preclinical profile and projected once or twice a day dosing supporting unboosted oral therapy in humans, CMX990 advanced to a Phase 1 clinical trial as an oral drug candidate for SARS-CoV-2.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Diferenciação Celular , Revelação , Inibidores de Proteases/farmacologia , Inibidores de Proteases/uso terapêutico , Antivirais/farmacologia
5.
Clin Cancer Res ; 30(7): 1226-1231, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38010220

RESUMO

On May 25, 2022, FDA approved a supplemental application for ivosidenib (Tibsovo; Servier) extending the indication in patients with newly diagnosed IDH1-mutated acute myeloid leukemia (AML) in older adults or those with comorbidities to include the combination with azacitidine. The efficacy of ivosidenib in combination with azacitidine was evaluated in Study AG120-C-009, a phase 3, multicenter, double-blind, randomized (1:1), controlled study of ivosidenib or matched placebo in combination with azacitidine in adults with previously untreated AML with an IDH1 mutation who were 75 years or older or had comorbidities that precluded use of intensive induction chemotherapy. Efficacy was established on the basis of improved event-free survival and overall survival on the ivosidenib + azacitidine arm [HR, 0.35; 95% confidence interval (CI), 0.17-0.72; P = 0.0038, and HR, 0.44; 95% CI, 0.27-0.73; P = 0.0010], respectively. Furthermore, the rate and duration of complete remission (CR) were improved with ivosidenib versus placebo [CR 47% versus 15%, two-sided P < 0.0001; median duration of CR not estimable (NE; 95% CI, 13.0-NE) months versus 11.2 (95% CI, 3.2-NE) months. The safety profile of ivosidenib in combination with azacitidine was consistent with that of ivosidenib monotherapy, with important adverse reactions including differentiation syndrome (15%) and QT interval prolongation (20%).


Assuntos
Azacitidina , Glicina/análogos & derivados , Leucemia Mieloide Aguda , Piridinas , Humanos , Idoso , Azacitidina/efeitos adversos , Isocitrato Desidrogenase/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação , Resposta Patológica Completa
6.
Cancers (Basel) ; 15(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37835461

RESUMO

Differentiation syndrome (DS) is a frequent and potentially life-threatening clinical syndrome first recognized with the advent of targeted therapeutics for acute promyelocytic leukemia (APL). DS was subsequently observed more broadly with targeted therapeutics for acute myeloid leukemia (AML). DS is typically characterized by fever, dyspnea, hypotension, weight gain, pleural or pericardial effusions, and acute renal failure. The incidence in patients with APL ranges from 2 to 37%, with the wide variation likely attributed to different diagnostic criteria, use of prophylactic treatment, and different treatment regimens. Treatment with corticosteroids +/- cytoreductive therapy should commence as soon as DS is suspected to reduce DS-related morbidity and mortality. The targeted anti-leukemic therapy should be discontinued in patients with severe DS. Here, we discuss the pathogenesis of DS, clinical presentations, diagnostic criteria, management strategies, and implementation of prospective tracking on clinical trials.

7.
Clin Lymphoma Myeloma Leuk ; 23(6): 463-470.e1, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076368

RESUMO

BACKGROUND: Patients of certain racial and ethnic groups have been underrepresented in clinical trials for treatment of malignancy. One potential barrier to participation is entry requirements that lead to patients in various racial and ethnic groups not meeting eligibility criteria for studies (ie, "screen failure"). The objective of this study was to analyze the rates and reasons for trial ineligibility by race and ethnicity in trials of acute myeloid leukemia (AML) submitted to the U.S. Food and Drug Administration (FDA) between 2016 and 2019. MATERIALS AND METHODS: Multicenter, global clinical trials submitted to the FDA to support AML drugs and biologics. We examined the rate of ineligibility among participants screened for studies of AML therapies submitted to the FDA from 2016 to 2019. Data were extracted from 13 trials used in approval evaluations, including race, screen status, and reason for ineligibility. RESULTS: Overall, patients in historically underrepresented racial and ethnic groups were less likely to meet entry criteria for studies compared to White patients, with 26.7% of White patients, 29.4% of Black patients, and 35.9% of Asian patients not meeting entry criteria. Lack of relevant disease mutation was the reason for ineligibility more frequently among Black and Asian patients. The findings were limited by the small number of underrepresented patients screened for participation. CONCLUSION: Our results suggest that entry requirements for studies may put underrepresented patients at a disadvantage, leading to less eligible patients and thus lower participation in clinical trials.


Assuntos
Produtos Biológicos , Leucemia Mieloide Aguda , Humanos , Etnicidade , Leucemia Mieloide Aguda/tratamento farmacológico , Estados Unidos , United States Food and Drug Administration , Negro ou Afro-Americano , Asiático , Brancos
8.
Nat Chem Biol ; 19(3): 275-283, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36175661

RESUMO

Prevention of infection and propagation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a high priority in the Coronavirus Disease 2019 (COVID-19) pandemic. Here we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin-converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 spike protein, thereby inhibiting viral entry, infectivity and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and, thus, the spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model and, thus, provide a novel avenue to pursue therapy.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Peptidil Dipeptidase A/metabolismo
9.
bioRxiv ; 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35411336

RESUMO

Prevention of infection and propagation of SARS-CoV-2 is of high priority in the COVID-19 pandemic. Here, we describe S-nitrosylation of multiple proteins involved in SARS-CoV-2 infection, including angiotensin converting enzyme 2 (ACE2), the receptor for viral entry. This reaction prevents binding of ACE2 to the SARS-CoV-2 Spike protein, thereby inhibiting viral entry, infectivity, and cytotoxicity. Aminoadamantane compounds also inhibit coronavirus ion channels formed by envelope (E) protein. Accordingly, we developed dual-mechanism aminoadamantane nitrate compounds that inhibit viral entry and thus spread of infection by S-nitrosylating ACE2 via targeted delivery of the drug after E-protein channel blockade. These non-toxic compounds are active in vitro and in vivo in the Syrian hamster COVID-19 model, and thus provide a novel avenue for therapy.

10.
PLoS Pathog ; 18(2): e1009862, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35134095

RESUMO

There is a growing appreciation for the idea that bacterial utilization of host-derived lipids, including cholesterol, supports Mycobacterium tuberculosis (Mtb) pathogenesis. This has generated interest in identifying novel antibiotics that can disrupt cholesterol utilization by Mtb in vivo. Here we identify a novel small molecule agonist (V-59) of the Mtb adenylyl cyclase Rv1625c, which stimulates 3', 5'-cyclic adenosine monophosphate (cAMP) synthesis and inhibits cholesterol utilization by Mtb. Similarly, using a complementary genetic approach that induces bacterial cAMP synthesis independent of Rv1625c, we demonstrate that inducing cAMP synthesis is sufficient to inhibit cholesterol utilization in Mtb. Although the physiological roles of individual adenylyl cyclase enzymes in Mtb are largely unknown, here we demonstrate that the transmembrane region of Rv1625c is required during cholesterol metabolism. Finally, the pharmacokinetic properties of Rv1625c agonists have been optimized, producing an orally-available Rv1625c agonist that impairs Mtb pathogenesis in infected mice. Collectively, this work demonstrates a role for Rv1625c and cAMP signaling in controlling cholesterol metabolism in Mtb and establishes that cAMP signaling can be pharmacologically manipulated for the development of new antibiotic strategies.


Assuntos
Adenilil Ciclases/metabolismo , Colesterol/metabolismo , AMP Cíclico/metabolismo , Mycobacterium tuberculosis/genética , Animais , Proteínas de Bactérias/metabolismo , Camundongos Endogâmicos BALB C , Transdução de Sinais/fisiologia , Ativação Transcricional/fisiologia
11.
Reprod Med (Basel) ; 3(4): 263-279, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37538930

RESUMO

Insufficient invasion of conceptus-derived trophoblast cells in the maternal decidua is a key event in the development of early-onset preeclampsia (PE), a subtype of PE associated with high maternal and fetal morbidity and mortality. Kisspeptins, a family of peptides previously shown to inhibit trophoblast cell invasion, have been implicated in the pathogenesis of early-onset PE. However, a role of kisspeptin signaling during the genesis of this syndrome has not been elucidated. Herein, we used the preeclamptic-like BPH/5 mouse model to investigate kisspeptin expression and potential upstream regulatory mechanisms in a PE-like syndrome. Expression of the kisspeptin encoding gene, Kiss1, and the 10-amino-acid kisspeptide (Kp-10), are upregulated in the non-pregnant uterus of BPH/5 females during diestrus and in the maternal-fetal interface during embryonic implantation and decidualization. Correspondingly, the dysregulation of molecular pathways downstream to kisspeptins also occurs in this mouse model. BPH/5 females have abnormal sex steroid hormone profiles during early gestation. In this study, the normalization of circulating concentrations of 17ß-estradiol (E2) and progesterone (P4) in pregnant BPH/5 females not only mitigated Kiss1 upregulation, but also rescued the expression of multiple molecules downstream to kisspeptin and ameliorated adverse fetoplacental outcomes. Those findings suggest that uterine Kiss1 upregulation occurs pre-pregnancy and persists during early gestation in a PE-like mouse model. Moreover, this study highlights the role of sex steroid hormones in uteroplacental Kiss1 dysregulation and the improvement of placentation by normalization of E2, P4 and Kiss1.

12.
Antimicrob Agents Chemother ; 66(1): e0156021, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34748385

RESUMO

Infection with Cryptosporidium spp. can cause severe diarrhea, leading to long-term adverse impacts and even death in malnourished children and immunocompromised patients. The only FDA-approved drug for treating cryptosporidiosis, nitazoxanide, has limited efficacy in the populations impacted the most by the diarrheal disease, and safe, effective treatment options are urgently needed. Initially identified by a large-scale phenotypic screening campaign, the antimycobacterial therapeutic clofazimine demonstrated great promise in both in vitro and in vivo preclinical models of Cryptosporidium infection. Unfortunately, a phase 2a clinical trial in HIV-infected adults with cryptosporidiosis did not identify any clofazimine treatment effect on Cryptosporidium infection burden or clinical outcomes. To explore whether clofazimine's lack of efficacy in the phase 2a trial may have been due to subtherapeutic clofazimine concentrations, a pharmacokinetic/pharmacodynamic modeling approach was undertaken to determine the relationship between clofazimine in vivo concentrations and treatment effects in multiple preclinical infection models. Exposure-response relationships were characterized using Emax and logistic models, which allowed predictions of efficacious clofazimine concentrations for the control and reduction of disease burden. After establishing exposure-response relationships for clofazimine treatment of Cryptosporidium infection in our preclinical model studies, it was unmistakable that the clofazimine levels observed in the phase 2a study participants were well below concentrations associated with anti-Cryptosporidium efficacy. Thus, despite a dosing regimen above the highest doses recommended for mycobacterial therapy, it is very likely the lack of treatment effect in the phase 2a trial was at least partially due to clofazimine concentrations below those required for efficacy against cryptosporidiosis. It is unlikely that clofazimine will provide a remedy for the large number of cryptosporidiosis patients currently without a viable treatment option unless alternative, safe clofazimine formulations with improved oral absorption are developed. (This study has been registered in ClinicalTrials.gov under identifier NCT03341767.).


Assuntos
Antiprotozoários , Criptosporidiose , Cryptosporidium , Adulto , Antiprotozoários/farmacologia , Antiprotozoários/uso terapêutico , Criança , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Criptosporidiose/tratamento farmacológico , Diarreia/tratamento farmacológico , Humanos
13.
Sci Adv ; 7(33)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34380625

RESUMO

Despite the development of next-generation antiandrogens, metastatic castration-resistant prostate cancer (mCRPC) remains incurable. Here, we describe a unique semisynthetic bispecific antibody that uses site-specific unnatural amino acid conjugation to combine the potency of a T cell-recruiting anti-CD3 antibody with the specificity of an imaging ligand (DUPA) for prostate-specific membrane antigen. This format enabled optimization of structure and function to produce a candidate (CCW702) with specific, potent in vitro cytotoxicity and improved stability compared with a bispecific single-chain variable fragment format. In vivo, CCW702 eliminated C4-2 xenografts with as few as three weekly subcutaneous doses and prevented growth of PCSD1 patient-derived xenograft tumors in mice. In cynomolgus monkeys, CCW702 was well tolerated up to 34.1 mg/kg per dose, with near-complete subcutaneous bioavailability and a PK profile supporting testing of a weekly dosing regimen in patients. CCW702 is being evaluated in a first in-human clinical trial for men with mCRPC who had progressed on prior therapies (NCT04077021).


Assuntos
Anticorpos Biespecíficos , Neoplasias de Próstata Resistentes à Castração , Animais , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Complexo CD3/uso terapêutico , Linhagem Celular Tumoral , Ensaios Clínicos como Assunto , Humanos , Ligantes , Masculino , Camundongos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Linfócitos T
14.
Nat Commun ; 12(1): 3309, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34083527

RESUMO

The ongoing pandemic caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), necessitates strategies to identify prophylactic and therapeutic drug candidates for rapid clinical deployment. Here, we describe a screening pipeline for the discovery of efficacious SARS-CoV-2 inhibitors. We screen a best-in-class drug repurposing library, ReFRAME, against two high-throughput, high-content imaging infection assays: one using HeLa cells expressing SARS-CoV-2 receptor ACE2 and the other using lung epithelial Calu-3 cells. From nearly 12,000 compounds, we identify 49 (in HeLa-ACE2) and 41 (in Calu-3) compounds capable of selectively inhibiting SARS-CoV-2 replication. Notably, most screen hits are cell-line specific, likely due to different virus entry mechanisms or host cell-specific sensitivities to modulators. Among these promising hits, the antivirals nelfinavir and the parent of prodrug MK-4482 possess desirable in vitro activity, pharmacokinetic and human safety profiles, and both reduce SARS-CoV-2 replication in an orthogonal human differentiated primary cell model. Furthermore, MK-4482 effectively blocks SARS-CoV-2 infection in a hamster model. Overall, we identify direct-acting antivirals as the most promising compounds for drug repurposing, additional compounds that may have value in combination therapies, and tool compounds for identification of viral host cell targets.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos/métodos , Pandemias , SARS-CoV-2 , Animais , COVID-19/prevenção & controle , COVID-19/virologia , Linhagem Celular , Citidina/administração & dosagem , Citidina/análogos & derivados , Citidina/farmacologia , Bases de Dados de Produtos Farmacêuticos , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Células HeLa , Ensaios de Triagem em Larga Escala/métodos , Humanos , Hidroxilaminas/administração & dosagem , Hidroxilaminas/farmacologia , Mesocricetus , Nelfinavir/farmacologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral/efeitos dos fármacos
15.
J Deaf Stud Deaf Educ ; 26(2): 251-262, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33555011

RESUMO

There are many variables having an impact on the spoken language acquisition of deaf and hard of hearing (DHH) children; therefore, it is critical for parents and professionals to have appropriate tools to monitor language acquisition. The Spoken Language Checklist (SLC) was developed to monitor and identify developmental milestones in a user-friendly checklist format that includes norms. The availability of the SLC will help parents and professionals to monitor the spoken language development of DHH children and provide interventions that should any delays be observed. Recognizing these delays early could prevent any insurmountable effects for cognitive development and further language development.


Assuntos
Surdez , Perda Auditiva , Pessoas com Deficiência Auditiva , Lista de Checagem , Criança , Humanos , Desenvolvimento da Linguagem , Pais
16.
Cell Chem Biol ; 28(2): 158-168.e5, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33113406

RESUMO

Cancer immunotherapies, including immune checkpoint blockade, have the potential to significantly impact treatments for diverse tumor types. At present, response failures and immune-related adverse events remain significant issues, which could be addressed using optimized combination therapies. Through a cell-based chemical screen of ∼200,000 compounds, we identified that HSP90 inhibitors robustly decrease PD-L1 surface expression, through a mechanism that appears to involve the regulation of master transcriptional regulators (i.e., STAT-3 and c-Myc). Interestingly, HSP90 inhibitors were found to also modulate the surface expression of additional checkpoint proteins (i.e., PD-L2). In the MC-38 syngeneic mouse tumor model, HSP90 inhibition was found to dramatically reduce PD-L1 surface expression on isolated live tumor cells and, consistent with recent findings, was found to increase the number of activated CD8+ T cells within the tumor microenvironment. These findings provide further rationale to explore HSP90 inhibitors as part of combination immunotherapies for the treatment of cancer.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Proteínas de Checkpoint Imunológico/genética , Neoplasias/terapia , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/tratamento farmacológico , Neoplasias/genética , Microambiente Tumoral/efeitos dos fármacos
17.
Matern Child Health J ; 24(11): 1339-1344, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32897446

RESUMO

Despite advances in hearing technology, a growing body of research, as well as early intervention protocols, deaf children largely fail to meet age-based language milestones. This gap in language acquisition points to the inconsistencies that exist between research and practice. Current research suggests that bimodal bilingual early interventions at deaf identification provide children language foundations that can lead to more effective outcomes. Recommendations that support implementing bimodal bilingualism at deaf identification include early intervention protocols, language foundations, and the development of appropriate bimodal bilingual environments. All recommendations serve as multifaceted tools in a deaf child's repertoire as language and modality preferences develop and solidify. This versatile approach allows for children to determine their own language and communication preferences.


Assuntos
Intervenção Educacional Precoce/métodos , Desenvolvimento da Linguagem , Multilinguismo , Pessoas com Deficiência Auditiva/reabilitação , Ensino/tendências , Criança , Intervenção Educacional Precoce/tendências , Humanos , Pessoas com Deficiência Auditiva/estatística & dados numéricos
18.
Science ; 369(6506): 993-999, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32820126

RESUMO

Stimulator of interferon genes (STING) links innate immunity to biological processes ranging from antitumor immunity to microbiome homeostasis. Mechanistic understanding of the anticancer potential for STING receptor activation is currently limited by metabolic instability of the natural cyclic dinucleotide (CDN) ligands. From a pathway-targeted cell-based screen, we identified a non-nucleotide, small-molecule STING agonist, termed SR-717, that demonstrates broad interspecies and interallelic specificity. A 1.8-angstrom cocrystal structure revealed that SR-717 functions as a direct cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) mimetic that induces the same "closed" conformation of STING. SR-717 displayed antitumor activity; promoted the activation of CD8+ T, natural killer, and dendritic cells in relevant tissues; and facilitated antigen cross-priming. SR-717 also induced the expression of clinically relevant targets, including programmed cell death 1 ligand 1 (PD-L1), in a STING-dependent manner.


Assuntos
Antineoplásicos/farmacologia , Materiais Biomiméticos/farmacologia , Proteínas de Membrana/metabolismo , Nucleotídeos Cíclicos/farmacologia , Animais , Antígeno B7-H1/metabolismo , Materiais Biomiméticos/química , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Cristalografia por Raios X , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Camundongos , Nucleotídeos Cíclicos/química , Conformação Proteica/efeitos dos fármacos
19.
Neurotherapeutics ; 17(4): 1861-1877, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32638217

RESUMO

Loss of dopaminergic neurons along the nigrostriatal axis, neuroinflammation, and peripheral immune dysfunction are the pathobiological hallmarks of Parkinson's disease (PD). Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been successfully tested for PD treatment. GM-CSF is a known immune modulator that induces regulatory T cells (Tregs) and serves as a neuronal protectant in a broad range of neurodegenerative diseases. Due to its short half-life, limited biodistribution, and potential adverse effects, alternative long-acting treatment schemes are of immediate need. A long-acting mouse GM-CSF (mPDM608) was developed through Calibr, a Division of Scripps Research. Following mPDM608 treatment, complete hematologic and chemistry profiles and T-cell phenotypes and functions were determined. Neuroprotective and anti-inflammatory capacities of mPDM608 were assessed in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice that included transcriptomic immune profiles. Treatment with a single dose of mPDM608 resulted in dose-dependent spleen and white blood cell increases with parallel enhancements in Treg numbers and immunosuppressive function. A shift in CD4+ T-cell gene expression towards an anti-inflammatory phenotype corresponded with decreased microgliosis and increased dopaminergic neuronal cell survival. mPDM608 elicited a neuroprotective peripheral immune transformation. The observed phenotypic shift and neuroprotective response was greater than observed with recombinant GM-CSF (rGM-CSF) suggesting human PDM608 as a candidate for PD treatment.


Assuntos
1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/prevenção & controle , Neuroproteção/efeitos dos fármacos , Neurotoxinas/toxicidade , Animais , Relação Dose-Resposta a Droga , Intoxicação por MPTP/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroproteção/fisiologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia
20.
Bioconjug Chem ; 31(4): 1167-1176, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32243137

RESUMO

Oxyntomodulin (OXM) is an intestinal peptide hormone that activates both glucagon-like peptide-1 (GLP-1) and glucagon (GCG) receptors. The natural peptide reduces body weight in obese subjects and exhibits direct acute glucoregulatory effects in patients with type II diabetes. However, the clinical utility of OXM is limited due to its lower in vitro potency and short in vivo half-life. To overcome these issues, we developed stapled, long-acting, and highly potent OXM analogs with balanced activities at both GLP-1 and GCG receptors. The lead molecule O14 exhibits potent and long-lasting effects on glucose control, body weight loss, and reduction of hepatic fat reduction in DIO mice. Importantly, O14 significantly reversed hepatic steatosis; reduced liver weight, total cholesterol, and hepatic triglycerides; and improved markers of liver function in a nonalcoholic steatohepatitis (NASH) mouse model. A symmetrical version of the peptide was also shown to be more efficacious and long-lasting in controlling glucose than semaglutide and the clinical candidate cotadutide in wild-type mice, highlighting the utility of our designs of the dual agonist as a potential new therapy for diabetes and liver diseases.


Assuntos
Peso Corporal/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Oxintomodulina/farmacologia , Oxintomodulina/farmacocinética , Animais , Glicemia/metabolismo , Colesterol/sangue , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/sangue , Oxintomodulina/uso terapêutico , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA