Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Infect Dis ; 24(5): 465-475, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38342107

RESUMO

BACKGROUND: The R21/Matrix-M vaccine has demonstrated high efficacy against Plasmodium falciparum clinical malaria in children in sub-Saharan Africa. Using trial data, we aimed to estimate the public health impact and cost-effectiveness of vaccine introduction across sub-Saharan Africa. METHODS: We fitted a semi-mechanistic model of the relationship between anti-circumsporozoite protein antibody titres and vaccine efficacy to data from 3 years of follow-up in the phase 2b trial of R21/Matrix-M in Nanoro, Burkina Faso. We validated the model by comparing predicted vaccine efficacy to that observed over 12-18 months in the phase 3 trial. Integrating this framework within a mathematical transmission model, we estimated the cases, malaria deaths, and disability-adjusted life-years (DALYs) averted and cost-effectiveness over a 15-year time horizon across a range of transmission settings in sub-Saharan Africa. Cost-effectiveness was estimated incorporating the cost of vaccine introduction (dose, consumables, and delivery) relative to existing interventions at baseline. We report estimates at a median of 20% parasite prevalence in children aged 2-10 years (PfPR2-10) and ranges from 3% to 65% PfPR2-10. FINDINGS: Anti-circumsporozoite protein antibody titres were found to satisfy the criteria for a surrogate of protection for vaccine efficacy against clinical malaria. Age-based implementation of a four-dose regimen of R21/Matrix-M vaccine was estimated to avert 181 825 (range 38 815-333 491) clinical cases per 100 000 fully vaccinated children in perennial settings and 202 017 (29 868-405 702) clinical cases per 100 000 fully vaccinated children in seasonal settings. Similar estimates were obtained for seasonal or hybrid implementation. Under an assumed vaccine dose price of US$3, the incremental cost per clinical case averted was $7 (range 4-48) in perennial settings and $6 (3-63) in seasonal settings and the incremental cost per DALY averted was $34 (29-139) in perennial settings and $30 (22-172) in seasonal settings, with lower cost-effectiveness ratios in settings with higher PfPR2-10. INTERPRETATION: Introduction of the R21/Matrix-M malaria vaccine could have a substantial public health benefit across sub-Saharan Africa. FUNDING: The Wellcome Trust, the Bill & Melinda Gates Foundation, the UK Medical Research Council, the European and Developing Countries Clinical Trials Partnership 2 and 3, the NIHR Oxford Biomedical Research Centre, and the Serum Institute of India, Open Philanthropy.


Assuntos
Análise Custo-Benefício , Vacinas Antimaláricas , Malária Falciparum , Modelos Teóricos , Saúde Pública , Humanos , Vacinas Antimaláricas/economia , Vacinas Antimaláricas/imunologia , Vacinas Antimaláricas/administração & dosagem , Malária Falciparum/prevenção & controle , Malária Falciparum/epidemiologia , Malária Falciparum/economia , Burkina Faso/epidemiologia , Pré-Escolar , Saúde Pública/economia , Plasmodium falciparum/imunologia , Criança , Proteínas de Protozoários/imunologia , Anticorpos Antiprotozoários/sangue , Eficácia de Vacinas , Lactente , Masculino , Feminino
2.
Immunol Cell Biol ; 101(6): 479-488, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36975169

RESUMO

Effective vaccines have reduced the morbidity and mortality caused by severe acute respiratory syndrome coronavirus-2 infection; however, the elderly remain the most at risk. Understanding how vaccines generate protective immunity and how these mechanisms change with age is key for informing future vaccine design. Cytotoxic CD8+ T cells are important for killing virally infected cells, and vaccines that induce antigen-specific CD8+ T cells in addition to humoral immunity provide an extra layer of immune protection. This is particularly important in cases where antibody titers are suboptimal, as can occur in older individuals. Here, we show that in aged mice, spike epitope-specific CD8+ T cells are generated in comparable numbers to younger animals after ChAdOx1 nCoV-19 vaccination, although phenotypic differences exist. This demonstrates that ChAdOx1 nCoV-19 elicits a good CD8+ T-cell response in older bodies, but that typical age-associated features are evident on these vaccine reactive T cells.


Assuntos
Linfócitos T CD8-Positivos , COVID-19 , Animais , Humanos , Camundongos , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , Vacinação , Linfócitos T Citotóxicos , Anticorpos Antivirais
3.
Clin Exp Immunol ; 211(3): 280-287, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36729167

RESUMO

The trajectory of immune responses following the primary dose series determines the decline in vaccine effectiveness over time. Here we report on maintenance of immune responses during the year following a two-dose schedule of ChAdOx1 nCoV-19/AZD1222, in the absence of infection, and also explore the decay of antibody after infection. Total spike-specific IgG antibody titres were lower with two low doses of ChAdOx1 nCoV-19 vaccines (two low doses) (P = 0.0006) than with 2 standard doses (the approved dose) or low dose followed by standard dose vaccines regimens. Longer intervals between first and second doses resulted in higher antibody titres (P < 0.0001); however, there was no evidence that the trajectory of antibody decay differed by interval or by vaccine dose, and the decay of IgG antibody titres followed a similar trajectory after a third dose of ChAdOx1 nCoV-19. Trends in post-infection samples were similar with an initial rapid decay in responses but good persistence of measurable responses thereafter. Extrapolation of antibody data, following two doses of ChAdOx1 nCov-19, demonstrates a slow rate of antibody decay with modelling, suggesting that antibody titres are well maintained for at least 2 years. These data suggest a persistent immune response after two doses of ChAdOx1 nCov-19 which will likely have a positive impact against serious disease and hospitalization.


Assuntos
ChAdOx1 nCoV-19 , Imunoglobulina G , Humanos , Seguimentos , Ensaios Clínicos Controlados Aleatórios como Assunto , Imunidade , Anticorpos Antivirais , Vacinação
4.
Nurs Open ; 10(2): 1016-1028, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36161707

RESUMO

AIM: The aim of the study was to reach consensus on modifiable risk factors for a novel system of care to address Manifestations of Frailty in hospitalized older adults. DESIGN: Consensus study. METHOD: A modified nominal group technique, incorporating expert group face-to-face interaction, review of existing evidence and pre/post-meeting questionnaire completion was undertaken November 2019-February 2020. RESULTS: Seventy-one risk factors, within seven risk factor domains (pain, medication, fluid and nutrition intake, mobility, elimination, infection, additional patient factors) were considered. It was agreed that 44 risk factors incorporating patient, organizational and environmental risk factors were modifiable and should be included in a novel system of care.


Assuntos
Fragilidade , Humanos , Idoso , Dor , Fatores de Risco
5.
Clin Infect Dis ; 76(2): 201-209, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36196614

RESUMO

BACKGROUND: People with human immunodeficiency virus (HIV) on antiretroviral therapy (ART) with good CD4 T-cell counts make effective immune responses following vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). There are few data on longer term responses and the impact of a booster dose. METHODS: Adults with HIV were enrolled into a single arm open label study. Two doses of ChAdOx1 nCoV-19 were followed 12 months later by a third heterologous vaccine dose. Participants had undetectable viraemia on ART and CD4 counts >350 cells/µL. Immune responses to the ancestral strain and variants of concern were measured by anti-spike immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA), MesoScale Discovery (MSD) anti-spike platform, ACE-2 inhibition, activation induced marker (AIM) assay, and T-cell proliferation. FINDINGS: In total, 54 participants received 2 doses of ChAdOx1 nCoV-19. 43 received a third dose (42 with BNT162b2; 1 with mRNA-1273) 1 year after the first dose. After the third dose, total anti-SARS-CoV-2 spike IgG titers (MSD), ACE-2 inhibition, and IgG ELISA results were significantly higher compared to Day 182 titers (P < .0001 for all 3). SARS-CoV-2 specific CD4+ T-cell responses measured by AIM against SARS-CoV-2 S1 and S2 peptide pools were significantly increased after a third vaccine compared to 6 months after a first dose, with significant increases in proliferative CD4+ and CD8+ T-cell responses to SARS-CoV-2 S1 and S2 after boosting. Responses to Alpha, Beta, Gamma, and Delta variants were boosted, although to a lesser extent for Omicron. CONCLUSIONS: In PWH receiving a third vaccine dose, there were significant increases in B- and T-cell immunity, including to known variants of concern (VOCs).


Assuntos
COVID-19 , Infecções por HIV , Adulto , Humanos , HIV , ChAdOx1 nCoV-19 , Vacina BNT162 , SARS-CoV-2 , COVID-19/prevenção & controle , Ativação Linfocitária , Vacinação , Infecções por HIV/tratamento farmacológico , Imunoglobulina G , Anticorpos Antivirais
6.
Cell Rep Med ; 3(12): 100845, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36455555

RESUMO

Emergence from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has been facilitated by the rollout of effective vaccines. Successful vaccines generate high-affinity plasma blasts and long-lived protective memory B cells. Here, we show a requirement for T follicular helper (Tfh) cells and the germinal center reaction for optimal serum antibody and memory B cell formation after ChAdOx1 nCoV-19 vaccination. We found that Tfh cells play an important role in expanding antigen-specific B cells while identifying Tfh-cell-dependent and -independent memory B cell subsets. Upon secondary vaccination, germinal center B cells generated during primary immunizations can be recalled as germinal center B cells again. Likewise, primary immunization GC-Tfh cells can be recalled as either Tfh or Th1 cells, highlighting the pluripotent nature of Tfh cell memory. This study demonstrates that ChAdOx1 nCoV-19-induced germinal centers are a critical source of humoral immunity.


Assuntos
COVID-19 , Imunidade Humoral , Humanos , ChAdOx1 nCoV-19 , Células B de Memória , Células T Auxiliares Foliculares , Linfócitos T Auxiliares-Indutores , COVID-19/prevenção & controle , SARS-CoV-2 , Centro Germinativo , Vacinação , Imunização Secundária
7.
EBioMedicine ; 85: 104298, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36229342

RESUMO

BACKGROUND: Intranasal vaccination may induce protective local and systemic immune responses against respiratory pathogens. A number of intranasal SARS-CoV-2 vaccine candidates have achieved protection in pre-clinical challenge models, including ChAdOx1 nCoV-19 (AZD1222, University of Oxford / AstraZeneca). METHODS: We performed a single-centre open-label Phase I clinical trial of intranasal vaccination with ChAdOx1 nCoV-19 in healthy adults, using the existing formulation produced for intramuscular administration. Thirty SARS-CoV-2 vaccine-naïve participants were allocated to receive 5 × 109 viral particles (VP, n=6), 2 × 1010 VP (n=12), or 5 × 1010 VP (n=12). Fourteen received second intranasal doses 28 days later. A further 12 received non-study intramuscular mRNA SARS-CoV-2 vaccination between study days 22 and 46. To investigate intranasal ChAdOx1 nCoV-19 as a booster, six participants who had previously received two intramuscular doses of ChAdOx1 nCoV-19 and six who had received two intramuscular doses of BNT162b2 (Pfizer / BioNTech) were given a single intranasal dose of 5 × 1010 VP of ChAdOx1 nCoV-19. Objectives were to assess safety (primary) and mucosal antibody responses (secondary). FINDINGS: Reactogenicity was mild or moderate. Antigen-specific mucosal antibody responses to intranasal vaccination were detectable in a minority of participants, rarely exceeding levels seen after SARS-CoV-2 infection. Systemic responses to intranasal vaccination were typically weaker than after intramuscular vaccination with ChAdOx1 nCoV-19. Antigen-specific mucosal antibody was detectable in participants who received an intramuscular mRNA vaccine after intranasal vaccination. Seven participants developed symptomatic SARS-CoV-2 infection. INTERPRETATION: This formulation of intranasal ChAdOx1 nCoV-19 showed an acceptable tolerability profile but induced neither a consistent mucosal antibody response nor a strong systemic response. FUNDING: AstraZeneca.


Assuntos
COVID-19 , Vacinas Virais , Adulto , Humanos , Adenoviridae/genética , Anticorpos Antivirais , Vacina BNT162 , ChAdOx1 nCoV-19 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , SARS-CoV-2 , Vacinação/efeitos adversos , Vacinas de mRNA
8.
Lancet ; 398(10304): 981-990, 2021 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-34480858

RESUMO

BACKGROUND: COVID-19 vaccine supply shortages are causing concerns about compromised immunity in some countries as the interval between the first and second dose becomes longer. Conversely, countries with no supply constraints are considering administering a third dose. We assessed the persistence of immunogenicity after a single dose of ChAdOx1 nCoV-19 (AZD1222), immunity after an extended interval (44-45 weeks) between the first and second dose, and response to a third dose as a booster given 28-38 weeks after the second dose. METHODS: In this substudy, volunteers aged 18-55 years who were enrolled in the phase 1/2 (COV001) controlled trial in the UK and had received either a single dose or two doses of 5 × 1010 viral particles were invited back for vaccination. Here we report the reactogenicity and immunogenicity of a delayed second dose (44-45 weeks after first dose) or a third dose of the vaccine (28-38 weeks after second dose). Data from volunteers aged 18-55 years who were enrolled in either the phase 1/2 (COV001) or phase 2/3 (COV002), single-blinded, randomised controlled trials of ChAdOx1 nCoV-19 and who had previously received a single dose or two doses of 5 × 1010 viral particles are used for comparison purposes. COV001 is registered with ClinicalTrials.gov, NCT04324606, and ISRCTN, 15281137, and COV002 is registered with ClinicalTrials.gov, NCT04400838, and ISRCTN, 15281137, and both are continuing but not recruiting. FINDINGS: Between March 11 and 21, 2021, 90 participants were enrolled in the third-dose boost substudy, of whom 80 (89%) were assessable for reactogenicity, 75 (83%) were assessable for evaluation of antibodies, and 15 (17%) were assessable for T-cells responses. The two-dose cohort comprised 321 participants who had reactogenicity data (with prime-boost interval of 8-12 weeks: 267 [83%] of 321; 15-25 weeks: 24 [7%]; or 44-45 weeks: 30 [9%]) and 261 who had immunogenicity data (interval of 8-12 weeks: 115 [44%] of 261; 15-25 weeks: 116 [44%]; and 44-45 weeks: 30 [11%]). 480 participants from the single-dose cohort were assessable for immunogenicity up to 44-45 weeks after vaccination. Antibody titres after a single dose measured approximately 320 days after vaccination remained higher than the titres measured at baseline (geometric mean titre of 66·00 ELISA units [EUs; 95% CI 47·83-91·08] vs 1·75 EUs [1·60-1·93]). 32 participants received a late second dose of vaccine 44-45 weeks after the first dose, of whom 30 were included in immunogenicity and reactogenicity analyses. Antibody titres were higher 28 days after vaccination in those with a longer interval between first and second dose than for those with a short interval (median total IgG titre: 923 EUs [IQR 525-1764] with an 8-12 week interval; 1860 EUs [917-4934] with a 15-25 week interval; and 3738 EUs [1824-6625] with a 44-45 week interval). Among participants who received a third dose of vaccine, antibody titres (measured in 73 [81%] participants for whom samples were available) were significantly higher 28 days after a third dose (median total IgG titre: 3746 EUs [IQR 2047-6420]) than 28 days after a second dose (median 1792 EUs [IQR 899-4634]; Wilcoxon signed rank test p=0·0043). T-cell responses were also boosted after a third dose (median response increased from 200 spot forming units [SFUs] per million peripheral blood mononuclear cells [PBMCs; IQR 127-389] immediately before the third dose to 399 SFUs per milion PBMCs [314-662] by day 28 after the third dose; Wilcoxon signed rank test p=0·012). Reactogenicity after a late second dose or a third dose was lower than reactogenicity after a first dose. INTERPRETATION: An extended interval before the second dose of ChAdOx1 nCoV-19 leads to increased antibody titres. A third dose of ChAdOx1 nCoV-19 induces antibodies to a level that correlates with high efficacy after second dose and boosts T-cell responses. FUNDING: UK Research and Innovation, Engineering and Physical Sciences Research Council, National Institute for Health Research, Coalition for Epidemic Preparedness Innovations, National Institute for Health Research Oxford Biomedical Research Centre, Chinese Academy of Medical Sciences Innovation Fund for Medical Science, Thames Valley and South Midlands NIHR Clinical Research Network, AstraZeneca, and Wellcome.


Assuntos
Vacinas contra COVID-19/administração & dosagem , Imunogenicidade da Vacina/imunologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Vacinação , Adulto , ChAdOx1 nCoV-19 , Feminino , Humanos , Leucócitos Mononucleares/imunologia , Masculino , Pessoa de Meia-Idade , Fatores de Tempo , Reino Unido
10.
Biochem Biophys Res Commun ; 293(4): 1233-41, 2002 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-12054508

RESUMO

In G protein-coupled receptors (GPCRs), a conserved aspartic acid in the DRY motif at the cytoplasmic end of helix 3 regulates the transition to the active state, while the adjacent arginine is crucial for G protein activation. To examine the functions of these two residues, we made D130I and R131Q mutations in the alpha2A adrenergic receptor (AR). We demonstrate that, unlike other GPCRs, the alpha2A AR is not constitutively activated by the D130I mutation, although the mutation increases agonist affinity. While the R131Q mutation severely disrupts function, it decreases rather than increasing agonist affinity as seen in other GPCRs. We then investigated the molecular effects of the same mutations in a peptide model and showed that Arg131 is not required for peptide-mediated G protein activation. These results indicate that the alpha2A AR does not follow the conventional GPCR mechanistic paradigm with respect to the function of the DRY motif.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Peptídeos/química , Receptores Adrenérgicos alfa 2/química , Agonistas alfa-Adrenérgicos/farmacologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Arginina/química , Ligação Competitiva , Tartarato de Brimonidina , Catálise , Linhagem Celular , Dicroísmo Circular , AMP Cíclico/metabolismo , Citoplasma/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Humanos , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Biossíntese Peptídica , Plasmídeos/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Quinoxalinas/farmacologia , Ensaio Radioligante , Receptores Adrenérgicos alfa 2/metabolismo , Transfecção
11.
Alcohol Clin Exp Res ; 26(3): 352-7, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11923588

RESUMO

BACKGROUND: Chronic ethanol has been shown to increase oxidative stress leading to neurodegenerative changes in the brain. Oxidative stress may up-regulate extracellular signal regulated kinases (ERK1/2) and, subsequently, the arachidonic acid cascade mediated by phospholipase A2 (PLA2) and cyclooxygenase (COX-2). Our earlier study showed that grape polyphenols (GP) could ameliorate oxidative damage to synaptic membrane proteins due to chronic ethanol treatment. This study was aimed at examining the effects of GP on mRNA expression of ERK1/2, cytosolic PLA2 (cPLA2), and COX-2 in different brain regions after chronic ethanol treatment. METHODS: Male Sprague-Dawley rats were fed a Lieber-DeCarli liquid diet with ethanol or isocaloric amount of maltose, with or without GP for 2 months. In situ hybridization was carried out using coronal brain sections through the hippocampus. RESULTS: Quantitative in situ hybridization showed no changes in ERK1 and cPLA2 mRNA levels in cortical areas and hippocampus after ethanol and/or GP administration. However, a decrease in ERK2 and an increase in COX-2 mRNA level was found in the hippocampus of ethanol-treated animals. GP completely inhibited the increase in COX-2 due to ethanol treatment. CONCLUSION: Increase in COX-2 expression may be an underlying mechanism for the increase in oxidative stress induced by chronic ethanol administration. Dietary supplementation of GP may have a beneficial role in inhibiting certain alcohol effects.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/enzimologia , Inibidores de Ciclo-Oxigenase/farmacologia , Etanol/administração & dosagem , Flavonoides , Isoenzimas/biossíntese , Fenóis/farmacologia , Polímeros/farmacologia , Prostaglandina-Endoperóxido Sintases/biossíntese , RNA Mensageiro/antagonistas & inibidores , Vitis , Animais , Depressores do Sistema Nervoso Central/administração & dosagem , Ciclo-Oxigenase 2 , Inibidores de Ciclo-Oxigenase 2 , Regulação da Expressão Gênica/efeitos dos fármacos , Isoenzimas/antagonistas & inibidores , Isoenzimas/genética , Masculino , Polifenóis , Prostaglandina-Endoperóxido Sintases/genética , RNA Mensageiro/biossíntese , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA