Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
2.
Nat Chem Biol ; 16(12): 1376-1384, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32807964

RESUMO

Currently approved immune checkpoint inhibitor therapies targeting the PD-1 and CTLA-4 receptor pathways are powerful treatment options for certain cancers; however, most patients across cancer types still fail to respond. Consequently, there is interest in discovering and blocking alternative pathways that mediate immune suppression. One such mechanism is an upregulation of sialoglycans in malignancy, which has been recently shown to inhibit immune cell activation through multiple mechanisms and therefore represents a targetable glycoimmune checkpoint. Since these glycans are not canonically druggable, we designed an αHER2 antibody-sialidase conjugate that potently and selectively strips diverse sialoglycans from breast cancer cells. In syngeneic breast cancer models, desialylation enhanced immune cell infiltration and activation and prolonged the survival of mice, an effect that was dependent on expression of the Siglec-E checkpoint receptor found on tumor-infiltrating myeloid cells. Thus, antibody-sialidase conjugates represent a promising modality for glycoimmune checkpoint therapy.


Assuntos
Imunoterapia/métodos , Melanoma Experimental/terapia , Neuraminidase/imunologia , Polissacarídeos/química , Receptor ErbB-2/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/imunologia , Aloenxertos , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Humanos , Hidrólise , Imunoconjugados/química , Imunoconjugados/metabolismo , Imunoconjugados/farmacologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Melanoma Experimental/mortalidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Moleculares , Terapia de Alvo Molecular , Neuraminidase/química , Neuraminidase/genética , Polissacarídeos/imunologia , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptor ErbB-2/genética , Receptor ErbB-2/imunologia , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Análise de Sobrevida , Linfócitos T/citologia , Linfócitos T/imunologia
3.
Proc Natl Acad Sci U S A ; 116(15): 7278-7287, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30910957

RESUMO

Mucin domains are densely O-glycosylated modular protein domains that are found in a wide variety of cell surface and secreted proteins. Mucin-domain glycoproteins are known to be key players in a host of human diseases, especially cancer, wherein mucin expression and glycosylation patterns are altered. Mucin biology has been difficult to study at the molecular level, in part, because methods to manipulate and structurally characterize mucin domains are lacking. Here, we demonstrate that secreted protease of C1 esterase inhibitor (StcE), a bacterial protease from Escherichia coli, cleaves mucin domains by recognizing a discrete peptide- and glycan-based motif. We exploited StcE's unique properties to improve sequence coverage, glycosite mapping, and glycoform analysis of recombinant human mucins by mass spectrometry. We also found that StcE digests cancer-associated mucins from cultured cells and from ascites fluid derived from patients with ovarian cancer. Finally, using StcE, we discovered that sialic acid-binding Ig-type lectin-7 (Siglec-7), a glycoimmune checkpoint receptor, selectively binds sialomucins as biological ligands, whereas the related receptor Siglec-9 does not. Mucin-selective proteolysis, as exemplified by StcE, is therefore a powerful tool for the study of mucin domain structure and function.


Assuntos
Antígenos CD/química , Antígenos de Diferenciação Mielomonocítica/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Lectinas/química , Metaloendopeptidases/química , Mucinas/química , Proteínas de Neoplasias/química , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/química , Motivos de Aminoácidos , Humanos , Espectrometria de Massas , Especificidade por Substrato
4.
Nat Cell Biol ; 20(10): 1203-1214, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202050

RESUMO

Glioblastoma multiforme (GBMs) are recurrent lethal brain tumours. Recurrent GBMs often exhibit mesenchymal, stem-like phenotypes that could explain their resistance to therapy. Analyses revealed that recurrent GBMs have increased tension and express high levels of glycoproteins that increase the bulkiness of the glycocalyx. Studies showed that a bulky glycocalyx potentiates integrin mechanosignalling and tissue tension and promotes a mesenchymal, stem-like phenotype in GBMs. Gain- and loss-of-function studies implicated integrin mechanosignalling as an inducer of GBM growth, survival, invasion and treatment resistance, and a mesenchymal, stem-like phenotype. Mesenchymal-like GBMs were highly contractile and expressed elevated levels of glycoproteins that expanded their glycocalyx, and they were surrounded by a stiff extracellular matrix that potentiated integrin mechanosignalling. Our findings suggest that there is a dynamic and reciprocal link between integrin mechanosignalling and a bulky glycocalyx, implying a causal link towards a mesenchymal, stem-like phenotype in GBMs. Strategies to ameliorate GBM tissue tension offer a therapeutic approach to reduce mortality due to GBM.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Glicocálix/metabolismo , Integrinas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Neoplásicas/metabolismo , Animais , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Sobrevivência Celular/efeitos dos fármacos , Retroalimentação Fisiológica/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Tensão Superficial , Temozolomida/uso terapêutico , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell ; 172(1-2): 305-317.e10, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29328918

RESUMO

Phagocytic receptors must diffuse laterally to become activated upon clustering by multivalent targets. Receptor diffusion, however, can be obstructed by transmembrane proteins ("pickets") that are immobilized by interacting with the cortical cytoskeleton. The molecular identity of these pickets and their role in phagocytosis have not been defined. We used single-molecule tracking to study the interaction between Fcγ receptors and CD44, an abundant transmembrane protein capable of indirect association with F-actin, hence likely to serve as a picket. CD44 tethers reversibly to formin-induced actin filaments, curtailing receptor diffusion. Such linear filaments predominate in the trailing end of polarized macrophages, where receptor mobility was minimal. Conversely, receptors were most mobile at the leading edge, where Arp2/3-driven actin branching predominates. CD44 binds hyaluronan, anchoring a pericellular coat that also limits receptor displacement and obstructs access to phagocytic targets. Force must be applied to traverse the pericellular barrier, enabling receptors to engage their targets.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Receptores de Hialuronatos/metabolismo , Receptores Imunológicos/metabolismo , Adulto , Animais , Sítios de Ligação , Células COS , Células Cultivadas , Chlorocebus aethiops , Feminino , Humanos , Receptores de Hialuronatos/química , Receptores de Hialuronatos/genética , Ácido Hialurônico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica
6.
Elife ; 62017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29266001

RESUMO

Metastasis depends upon cancer cell growth and survival within the metastatic niche. Tumors which remodel their glycocalyces, by overexpressing bulky glycoproteins like mucins, exhibit a higher predisposition to metastasize, but the role of mucins in oncogenesis remains poorly understood. Here we report that a bulky glycocalyx promotes the expansion of disseminated tumor cells in vivo by fostering integrin adhesion assembly to permit G1 cell cycle progression. We engineered tumor cells to display glycocalyces of various thicknesses by coating them with synthetic mucin-mimetic glycopolymers. Cells adorned with longer glycopolymers showed increased metastatic potential, enhanced cell cycle progression, and greater levels of integrin-FAK mechanosignaling and Akt signaling in a syngeneic mouse model of metastasis. These effects were mirrored by expression of the ectodomain of cancer-associated mucin MUC1. These findings functionally link mucinous proteins with tumor aggression, and offer a new view of the cancer glycocalyx as a major driver of disease progression.


Assuntos
Carcinogênese , Ciclo Celular , Proliferação de Células , Glicocálix/metabolismo , Neoplasias Mamárias Animais/secundário , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glicocálix/genética , Humanos , Camundongos , Mucina-1/genética , Mucina-1/metabolismo
7.
Proc Natl Acad Sci U S A ; 113(37): 10304-9, 2016 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-27551071

RESUMO

Cell surface sialosides constitute a central axis of immune modulation that is exploited by tumors to evade both innate and adaptive immune destruction. Therapeutic strategies that target tumor-associated sialosides may therefore potentiate antitumor immunity. Here, we report the development of antibody-sialidase conjugates that enhance tumor cell susceptibility to antibody-dependent cell-mediated cytotoxicity (ADCC) by selective desialylation of the tumor cell glycocalyx. We chemically fused a recombinant sialidase to the human epidermal growth factor receptor 2 (HER2)-specific antibody trastuzumab through a C-terminal aldehyde tag. The antibody-sialidase conjugate desialylated tumor cells in a HER2-dependent manner, reduced binding by natural killer (NK) cell inhibitory sialic acid-binding Ig-like lectin (Siglec) receptors, and enhanced binding to the NK-activating receptor natural killer group 2D (NKG2D). Sialidase conjugation to trastuzumab enhanced ADCC against tumor cells expressing moderate levels of HER2, suggesting a therapeutic strategy for cancer patients with lower HER2 levels or inherent trastuzumab resistance. Precision glycocalyx editing with antibody-enzyme conjugates is therefore a promising avenue for cancer immune therapy.


Assuntos
Glicocálix/genética , Imunoterapia , Neoplasias/imunologia , Receptor ErbB-2/genética , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/imunologia , Glicocálix/imunologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Neoplasias/terapia , Neuraminidase/administração & dosagem , Neuraminidase/química , Receptor ErbB-2/imunologia , Lectina 1 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Trastuzumab/administração & dosagem , Trastuzumab/efeitos adversos
8.
Cell ; 164(1-2): 128-140, 2016 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-26771488

RESUMO

Phagocytosis is initiated by lateral clustering of receptors, which in turn activates Src-family kinases (SFKs). Activation of SFKs requires depletion of tyrosine phosphatases from the area of particle engagement. We investigated how the major phosphatase CD45 is excluded from contact sites, using single-molecule tracking. The mobility of CD45 increased markedly upon engagement of Fcγ receptors. While individual CD45 molecules moved randomly, they were displaced from the advancing phagocytic cup by an expanding diffusional barrier. By micropatterning IgG, the ligand of Fcγ receptors, we found that the barrier extended well beyond the perimeter of the receptor-ligand engagement zone. Second messengers generated by Fcγ receptors activated integrins, which formed an actin-tethered diffusion barrier that excluded CD45. The expanding integrin wave facilitates the zippering of Fcγ receptors onto the target and integrates the information from sparse receptor-ligand complexes, coordinating the progression and ultimate closure of the phagocytic cup.


Assuntos
Integrinas/metabolismo , Macrófagos/imunologia , Fagocitose , Actinas/metabolismo , Animais , Humanos , Antígenos Comuns de Leucócito/metabolismo , Macrófagos/citologia , Camundongos , Podossomos/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo , Receptores de IgG/metabolismo
9.
Angew Chem Int Ed Engl ; 54(52): 15782-8, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26647316

RESUMO

Synthetic glycopolymers that emulate cell-surface mucins have been used to elucidate the role of mucin overexpression in cancer. However, because they are internalized within hours, these glycopolymers could not be employed to probe processes that occur on longer time scales. In this work, we tested a panel of glycopolymers bearing a variety of lipids to identify those that persist on cell membranes. Strikingly, we found that cholesterylamine (CholA) anchored glycopolymers are internalized into vesicles that serve as depots for delivery back to the cell surface, allowing for the display of cell-surface glycopolymers for at least ten days, even while the cells are dividing. As with native mucins, the cell-surface display of CholA-anchored glycopolymers influenced the focal adhesion distribution. Furthermore, we show that these mimetics enhance the survival of nonmalignant cells in a zebrafish model of metastasis. CholA-anchored glycopolymers therefore expand the application of glycocalyx engineering in glycobiology.


Assuntos
Sobrevivência Celular , Glicocálix , Polímeros/química , Linhagem Celular Tumoral , Humanos
10.
Sci Rep ; 4: 5189, 2014 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-24898534

RESUMO

Acidosis causes millions of deaths each year and strategies for normalizing the blood pH in acidosis patients are greatly needed. The lactate dehydrogenase (LDH) pathway has great potential for treating acidosis due to its ability to convert protons and pyruvate into lactate and thereby raise blood pH, but has been challenging to develop into a therapy because there are no pharmaceutical-based approaches for engineering metabolic pathways in vivo. In this report we demonstrate that the metabolic flux of the LDH pathway can be engineered with the compound 5-amino-2-hydroxymethylphenyl boronic acid (ABA), which binds lactate and accelerates the consumption of protons by converting pyruvate to lactate and increasing the NAD(+)/NADH ratio. We demonstrate here that ABA can rescue mice from metformin induced acidosis, by binding lactate, and increasing the blood pH from 6.7 to 7.2 and the blood NAD(+)/NADH ratio by 5 fold. ABA is the first class of molecule that can metabolically engineer the LDH pathway and has the potential to have a significant impact on medicine, given the large number of patients that suffer from acidosis.


Assuntos
Acidose/prevenção & controle , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Engenharia Metabólica , Ácido Pirúvico/metabolismo , Acidose/induzido quimicamente , Acidose/metabolismo , Animais , Ácidos Borônicos/farmacologia , Células Cultivadas , Feminino , Hipoglicemiantes/toxicidade , Cinética , Redes e Vias Metabólicas , Metformina/toxicidade , Camundongos , Camundongos Endogâmicos C57BL
11.
Biomed Res Int ; 2013: 732182, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24171170

RESUMO

The immune system is traditionally considered from the perspective of defending against bacterial or viral infections. However, foreign materials like implants can also illicit immune responses. These immune responses are mediated by a large number of molecular signals, including cytokines, antibodies and reactive radical species, and cell types, including macrophages, neutrophils, natural killer cells, T-cells, B-cells, and dendritic cells. Most often, these molecular signals lead to the generation of fibrous encapsulation of the biomaterials, thereby shielding the body from these biomaterials. In this review we will focus on two different types of biomaterials: those that actively modulate the immune response, as seen in antigen delivery vehicles for vaccines, and those that illicit relatively small immune response, which are important for implantable materials. The first serves to actively influence the immune response by co-opting certain immune pathways, while the second tries to mimic the properties of the host in an attempt to remain undetected by the immune system. As these are two very different end points, each type of biomaterial has been studied and developed separately and in recent years, many advances have been made in each respective area, which will be highlighted in this review.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Células Dendríticas/imunologia , Sistemas de Liberação de Medicamentos , Fatores Imunológicos/uso terapêutico , Leucócitos/imunologia , Próteses e Implantes , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA