Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Eur Heart J ; 41(23): 2168-2179, 2020 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-31834357

RESUMO

AIMS: ST-elevation myocardial infarction is associated with high levels of cardiac sympathetic drive and release of the co-transmitter neuropeptide Y (NPY). We hypothesized that despite beta-blockade, NPY promotes arrhythmogenesis via ventricular myocyte receptors. METHODS AND RESULTS: In 78 patients treated with primary percutaneous coronary intervention, sustained ventricular tachycardia (VT) or fibrillation (VF) occurred in 6 (7.7%) within 48 h. These patients had significantly (P < 0.05) higher venous NPY levels despite the absence of classical risk factors including late presentation, larger infarct size, and beta-blocker usage. Receiver operating curve identified an NPY threshold of 27.3 pg/mL with a sensitivity of 0.83 and a specificity of 0.71. RT-qPCR demonstrated the presence of NPY mRNA in both human and rat stellate ganglia. In the isolated Langendorff perfused rat heart, prolonged (10 Hz, 2 min) stimulation of the stellate ganglia caused significant NPY release. Despite maximal beta-blockade with metoprolol (10 µmol/L), optical mapping of ventricular voltage and calcium (using RH237 and Rhod2) demonstrated an increase in magnitude and shortening in duration of the calcium transient and a significant lowering of ventricular fibrillation threshold. These effects were prevented by the Y1 receptor antagonist BIBO3304 (1 µmol/L). Neuropeptide Y (250 nmol/L) significantly increased the incidence of VT/VF (60% vs. 10%) during experimental ST-elevation ischaemia and reperfusion compared to control, and this could also be prevented by BIBO3304. CONCLUSIONS: The co-transmitter NPY is released during sympathetic stimulation and acts as a novel arrhythmic trigger. Drugs inhibiting the Y1 receptor work synergistically with beta-blockade as a new anti-arrhythmic therapy.


Assuntos
Neuropeptídeo Y , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Animais , Coração , Humanos , Ratos , Fibrilação Ventricular
2.
JCI Insight ; 3(9)2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29720569

RESUMO

Elevated levels of brain natriuretic peptide (BNP) are regarded as an early compensatory response to cardiac myocyte hypertrophy, although exogenously administered BNP shows poor clinical efficacy in heart failure and hypertension. We tested whether phosphodiesterase 2A (PDE2A), which regulates the action of BNP-activated cyclic guanosine monophosphate (cGMP), was directly involved in modulating Ca2+ handling from stellate ganglia (SG) neurons and cardiac norepinephrine (NE) release in rats and humans with an enhanced sympathetic phenotype. SG were also isolated from patients with sympathetic hyperactivity and healthy donor patients. PDE2A activity of the SG was greater in both spontaneously hypertensive rats (SHRs) and patients compared with their respective controls, whereas PDE2A mRNA was only high in SHR SG. BNP significantly reduced the magnitude of the calcium transients and ICaN in normal Wistar Kyoto (WKY) SG neurons, but not in the SHRs. cGMP levels stimulated by BNP were also attenuated in SHR SG neurons. Overexpression of PDE2A in WKY neurons recapitulated the calcium phenotype seen in SHR neurons. Functionally, BNP significantly reduced [3H]-NE release in the WKY rats, but not in the SHRs. Blockade of overexpressed PDE2A with Bay 60-7550 or overexpression of catalytically inactive PDE2A reestablished the modulatory action of BNP in SHR SG neurons. This suggests that PDE2A may be a key target in modulating the action of BNP to reduce sympathetic hyperactivity.


Assuntos
Doenças do Sistema Nervoso Autônomo/metabolismo , Cálcio/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/metabolismo , Peptídeo Natriurético Encefálico/farmacologia , Neurônios/metabolismo , Norepinefrina/metabolismo , Gânglio Estrelado/enzimologia , Adulto , Idoso , Animais , Arritmias Cardíacas/enzimologia , Arritmias Cardíacas/fisiopatologia , Doenças do Sistema Nervoso Autônomo/fisiopatologia , Estudos de Casos e Controles , GMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/antagonistas & inibidores , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Campos Eletromagnéticos , Feminino , Coração/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/enzimologia , RNA Mensageiro/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Gânglio Estrelado/patologia , Transmissão Sináptica , Função Ventricular , Adulto Jovem
3.
Br J Pharmacol ; 174(22): 4007-4020, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27629236

RESUMO

Adipose tissue (AT) has recently been identified as a dynamic endocrine organ secreting a wide range of adipokines. Adiponectin is one such hormone, exerting endocrine and paracrine effects on the cardiovascular system. At a cellular and molecular level, adiponectin has anti-inflammatory, antioxidant and anti-apoptotic roles, thereby mitigating key mechanisms underlying cardiovascular disease (CVD) pathogenesis. However, adiponectin expression in human AT as well as its circulating levels are increased in advanced CVD states, and it is actually considered by many as a 'rescue hormone'. Due to the complex mechanisms regulating adiponectin's biosynthesis in the human AT, measurement of its levels as a biomarker in CVD is highly controversial, given that adiponectin exerts protective effects on the cardiovascular system but at the same time its increased levels flag advanced CVD. In this review article, we present the involvement of adiponectin in CVD pathogenesis and we discuss its role as a clinical biomarker. LINKED ARTICLES: This article is part of a themed section on Targeting Inflammation to Reduce Cardiovascular Disease Risk. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.22/issuetoc and http://onlinelibrary.wiley.com/doi/10.1111/bcp.v82.4/issuetoc.


Assuntos
Adiponectina/metabolismo , Doenças Cardiovasculares/metabolismo , Adiponectina/química , Tecido Adiposo/metabolismo , Animais , Biomarcadores/metabolismo , Humanos
4.
Ann Thorac Surg ; 102(5): 1736-1746, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27624295

RESUMO

Saphenous vein graft (SVG) disease and subsequent vein graft failure remain a major problem after coronary artery bypass graft operations. In an effort to mitigate loss of endothelial viability, the vein is stored, intraoperatively, in a preservation solution. However, human SVG samples demonstrate endothelial denudation and dysfunction after such storage, the severity of which varies, depending on the medium. The paucity of clinical data evaluating preservation solutions is illustrated by the absence of optimal procedural protocol. This review evaluates the potential efficacy of different storage solutions in preserving vein grafts, in relation to a mechanistic understanding of SVG pathophysiology.


Assuntos
Ponte de Artéria Coronária/métodos , Doença da Artéria Coronariana/cirurgia , Oclusão de Enxerto Vascular/prevenção & controle , Preservação de Órgãos/métodos , Veia Safena/transplante , Angiografia Coronária , Doença da Artéria Coronariana/diagnóstico , Humanos , Período Intraoperatório
5.
J Physiol ; 594(21): 6255-6266, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27510951

RESUMO

KEY POINTS: Peripheral chemoreflex sensitization is a feature of renovascular hypertension. Carotid sinus nerve denervation (CSD) has recently been shown to relieve hypertension and reduce sympathetic activity in other rat models of hypertension. We show that CSD in renovascular hypertension halts further increases in blood pressure. Possible mechanisms include improvements in baroreceptor reflex sensitivity and renal function, restoration of cardiac calcium signalling towards control levels, and reduced neural inflammation. Our data suggest that the peripheral chemoreflex may be a viable therapeutic target for renovascular hypertension. ABSTRACT: The peripheral chemoreflex is known to be hyper-responsive in both spontaneously hypertensive (SHR) and Goldblatt hypertensive (two kidney one clip; 2K1C) rats. We have previously shown that carotid sinus nerve denervation (CSD) reduces arterial blood pressure (ABP) in SHR. In the present study, we show that CSD ameliorates 2K1C hypertension and reveal the potential underlying mechanisms. Adult Wistar rats were instrumented to record ABP via telemetry, and then underwent CSD (n = 9) or sham CSD (n = 9) 5 weeks after renal artery clipping, in comparison with normal Wistar rats (n = 5). After 21 days, renal function was assessed, and tissue was collected to assess sympathetic postganglionic intracellular calcium transients ([Ca2+ ]i ) and immune cell infiltrates. Hypertensive 2K1C rats showed a profound elevation in ABP (Wistar: 98 ± 4 mmHg vs. 2K1C: 147 ± 8 mmHg; P < 0.001), coupled with impairments in renal function and baroreflex sensitivity, increased neuroinflammatory markers and enhanced [Ca2+ ]I in stellate neurons (P < 0.05). CSD reduced ABP in 2K1C+CSD rats and prevented the further progressive increase in ABP seen in 2K1C+sham CSD rats, with a between-group difference of 14 ± 2 mmHg by week 3 (P < 0.01), which was accompanied by improvements in both baroreflex control and spectral indicators of cardiac sympatho-vagal balance. Furthermore, CSD improved protein and albuminuria, decreased [Ca2+ ]i evoked responses from stellate neurons, and also reduced indicators of brainstem inflammation. In summary, CSD in 2K1C rats reduces the hypertensive burden and improves renal function. This may be mediated by improvements in autonomic balance, functional remodelling of post-ganglionic neurons and reduced inflammation. Our results suggest that the peripheral chemoreflex may be considered as a potential therapeutic target for controlling renovascular hypertension.


Assuntos
Seio Carotídeo/inervação , Hipertensão Renovascular/fisiopatologia , Animais , Barorreflexo , Pressão Sanguínea , Sinalização do Cálcio , Seio Carotídeo/cirurgia , Células Cultivadas , Hipertensão Renovascular/cirurgia , Masculino , Neurônios/metabolismo , Ratos , Ratos Wistar , Simpatectomia , Fibras Simpáticas Pós-Ganglionares/fisiologia , Fibras Simpáticas Pós-Ganglionares/cirurgia
6.
Mol Metab ; 5(5): 321-327, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27110484

RESUMO

BACKGROUND: High density lipoproteins (HDLs) are thought to be atheroprotective and to reduce the risk of cardiovascular disease (CVD). Besides their antioxidant, antithrombotic, anti-inflammatory, anti-apoptotic properties in the vasculature, HDLs also improve glucose metabolism in skeletal muscle. SCOPE OF THE REVIEW: Herein, we review the functional role of HDLs to improve metabolic disorders, especially those involving insulin resistance and to induce regression of CVD with a particular focus on current pharmacological treatment options as well as lifestyle interventions, particularly exercise. MAJOR CONCLUSIONS: Functional properties of HDLs continue to be considered important mediators to reverse metabolic dysfunction and to regress atherosclerotic cardiovascular disease. Lifestyle changes are often recommended to reduce the risk of CVD, with exercise being one of the most important of these. Understanding how exercise improves HDL function will likely lead to new approaches to battle the expanding burden of obesity and the metabolic syndrome.

7.
Hypertension ; 66(1): 190-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25916722

RESUMO

Elevated B-type natriuretic peptide (BNP) regulates cGMP-phosphodiesterase activity. Its elevation is regarded as an early compensatory response to cardiac failure where it can facilitate sympathovagal balance and cardiorenal homeostasis. However, recent reports suggest a paradoxical proadrenergic action of BNP. Because phosphodiesterase activity is altered in cardiovascular disease, we tested the hypothesis that BNP might lose its efficacy by minimizing the action of cGMP on downstream pathways coupled to neurotransmission. BNP decreased norepinephrine release from atrial preparations in response to field stimulation and also significantly reduced the heart rate responses to sympathetic nerve stimulation in vitro. Using electrophysiological recording and fluorescence imaging, BNP also reduced the depolarization evoked calcium current and intracellular calcium transient in isolated cardiac sympathetic neurons. Pharmacological manipulations suggested that the reduction in the calcium transient was regulated by a cGMP/protein kinase G pathway. Fluorescence resonance energy transfer measurements for cAMP, and an immunoassay for cGMP, showed that BNP increased cGMP, but not cAMP. In addition, overexpression of phosphodiesterase 2A after adenoviral gene transfer markedly decreased BNP stimulation of cGMP and abrogated the BNP responses to the calcium current, intracellular calcium transient, and neurotransmitter release. These effects were reversed on inhibition of phosphodiesterase 2A. Moreover, phosphodiesterase 2A activity was significantly elevated in stellate neurons from the prohypertensive rat compared with the normotensive control. Our data suggest that abnormally high levels of phosphodiesterase 2A may provide a brake against the inhibitory action of BNP on sympathetic transmission.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/fisiologia , Sistema de Condução Cardíaco/enzimologia , Hipertensão/enzimologia , Peptídeo Natriurético Encefálico/farmacologia , Sistema Nervoso Simpático/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , GMP Cíclico/fisiologia , Proteínas Quinases Dependentes de GMP Cíclico/fisiologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 2/genética , Sistema de Condução Cardíaco/efeitos dos fármacos , Sistema de Condução Cardíaco/fisiologia , Frequência Cardíaca , Hipertensão/genética , Hipertensão/fisiopatologia , Isatina/farmacologia , Masculino , Peptídeo Natriurético Encefálico/fisiologia , Neurônios/enzimologia , Neurônios/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores do Fator Natriurético Atrial/efeitos dos fármacos , Receptores do Fator Natriurético Atrial/fisiologia , Proteínas Recombinantes de Fusão/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Gânglio Estrelado/citologia , Gânglio Estrelado/efeitos dos fármacos , Gânglio Estrelado/fisiologia , Sistema Nervoso Simpático/fisiologia , Transmissão Sináptica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA