RESUMO
BACKGROUND: Acute and chronic systemic inflammation are characterized by the systemic production of the proinflammatory cytokine tumor necrosis factor alpha (TNF-alpha) that plays a role in immune to brain communication. Previous preclinical research shows that acute systemic inflammation contributes to an exacerbation of neurodegeneration by activation of primed microglial cells. OBJECTIVE: To determine whether acute episodes of systemic inflammation associated with increased TNF-alpha would be associated with long-term cognitive decline in a prospective cohort study of subjects with Alzheimer disease. METHODS: Three hundred community-dwelling subjects with mild to severe Alzheimer disease were cognitively assessed, and a blood sample was taken for systemic inflammatory markers. Each subject's main caregiver was interviewed to assess the presence of incident systemic inflammatory events. Assessments of both patient and caregiver were repeated at 2, 4, and 6 months. RESULTS: Acute systemic inflammatory events, found in around half of all subjects, were associated with an increase in the serum levels of proinflammatory cytokine TNF-alpha and a 2-fold increase in the rate of cognitive decline over a 6-month period. High baseline levels of TNF-alpha were associated with a 4-fold increase in the rate of cognitive decline. Subjects who had low levels of serum TNF-alpha throughout the study showed no cognitive decline over the 6-month period. CONCLUSIONS: Both acute and chronic systemic inflammation, associated with increases in serum tumor necrosis factor alpha, is associated with an increase in cognitive decline in Alzheimer disease.
Assuntos
Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Transtornos Cognitivos/imunologia , Transtornos Cognitivos/patologia , Mediadores da Inflamação/sangue , Fator de Necrose Tumoral alfa/fisiologia , Doença Aguda , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Biomarcadores/sangue , Doença Crônica , Transtornos Cognitivos/diagnóstico , Estudos de Coortes , Progressão da Doença , Feminino , Seguimentos , Humanos , Mediadores da Inflamação/fisiologia , Masculino , Estudos Prospectivos , Estudos Retrospectivos , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/sangueRESUMO
The pathway and complete collection of factors that orchestrate ribosome assembly are not clear. To address these problems, we affinity purified yeast preribosomal particles containing the nucleolar protein Nop7p and developed means to separate their components. Nop7p is associated primarily with 66S preribosomes containing either 27SB or 25.5S plus 7S pre-rRNAs. Copurifying proteins identified by mass spectrometry include ribosomal proteins, nonribosomal proteins previously implicated in 60S ribosome biogenesis, and proteins not known to be involved in ribosome production. Analysis of strains mutant for eight of these proteins not previously implicated in ribosome biogenesis showed that they do participate in this pathway. These results demonstrate that proteomic approaches in concert with genetic tools provide powerful means to purify and characterize ribosome assembly intermediates.
Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Ribossomos/química , Saccharomyces cerevisiae/metabolismo , Fracionamento Celular , Cromatografia de Afinidade , Proteínas Fúngicas/genética , Proteínas Fúngicas/isolamento & purificação , Genes Reporter , Immunoblotting , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/isolamento & purificação , RNA Fúngico/metabolismo , RNA Ribossômico/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribossomos/metabolismoRESUMO
Patients with dementia with Lewy bodies (DLB) have progressive deficits in cognition, parkinsonism, and neuropsychiatric symptoms. Cholinesterase inhibitors have been used to ameliorate cognitive decline and neuropsychiatric symptoms in short-term trials. In this study, patients with DLB were treated with rivastigmine up to 96 weeks. Improvement from baseline was seen in cognitive function as measured by the Mini-Mental State Examination (MMSE), and neuropsychiatric symptoms as measured by the Neuropsychiatric Inventory (NPI) over the first 24 weeks of treatment. By 96 weeks, neither the MMSE scores nor the NPI scores were significantly worse than at baseline.
Assuntos
Carbamatos/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Doença por Corpos de Lewy/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Fenilcarbamatos , Idoso , Idoso de 80 Anos ou mais , Carbamatos/efeitos adversos , Inibidores da Colinesterase/efeitos adversos , Cognição/efeitos dos fármacos , Feminino , Humanos , Doença por Corpos de Lewy/psicologia , Masculino , Pessoa de Meia-Idade , Fármacos Neuroprotetores/efeitos adversos , Transtornos Parkinsonianos/tratamento farmacológico , Rivastigmina , Resultado do TratamentoRESUMO
Production of ribosomal protein S14 in Saccharomyces cerevisiae is coordinated with the rate of ribosome assembly by a feedback mechanism that represses expression of RPS14B. Three-hybrid assays in vivo and filter binding assays in vitro demonstrate that rpS14 directly binds to an RNA stem-loop structure in RPS14B pre-mRNA that is necessary for RPS14B regulation. Moreover, rpS14 binds to a conserved helix in 18S rRNA with approximately five- to sixfold-greater affinity. These results support the model that RPS14B regulation is mediated by direct binding of rpS14 either to its pre-mRNA or to rRNA. Investigation of these interactions with the three-hybrid system reveals two regions of rpS14 that are involved in RNA recognition. D52G and E55G mutations in rpS14 alter the specificity of rpS14 for RNA, as indicated by increased affinity for RPS14B RNA but reduced affinity for the rRNA target. Deletion of the C terminus of rpS14, where multiple antibiotic resistance mutations map, prevents binding of rpS14 to RNA and production of functional 40S subunits. The emetine-resistant protein, rpS14-EmRR, which contains two mutations near the C terminus of rpS14, does not bind either RNA target in the three-hybrid or in vitro assays. This is the first direct demonstration that an antibiotic resistance mutation alters binding of an r protein to rRNA and is consistent with the hypothesis that antibiotic resistance mutations can result from local alterations in rRNA structure.
Assuntos
Regulação Fúngica da Expressão Gênica , Precursores de RNA/metabolismo , RNA Ribossômico 18S/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Saccharomyces cerevisiae/genética , Alcaloides/farmacologia , Sequência de Aminoácidos , Sequência de Bases , Resistência Microbiana a Medicamentos , Emetina/farmacologia , Dados de Sequência Molecular , Mutagênese , Conformação de Ácido Nucleico , Hibridização de Ácido Nucleico , RNA Fúngico , RNA Ribossômico 18S/química , Ribossomos , Saccharomyces cerevisiae/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
Previously, yeast prp3 mutants were found to be blocked prior to the first catalytic step of pre-mRNA splicing. No splicing intermediates or products are formed from pre-mRNA in heat-inactivated prp3 mutants or prp3 mutant extracts. Here we show that Prp3p is a component of the U4/U6 snRNP and is also present in the U4/U6.U5 tri-snRNP. Heat inactivation of prp3 extracts results in depletion of free U6 snRNPs and U4/U6.U5 tri-snRNPs, but not U4/U6 snRNPs or U5 snRNPs. Free U4 snRNP, normally not present in wild-type extracts, accumulates under these conditions. Assays of in vivo levels of snRNAs in a prp3 mutant revealed that amounts of free U6 snRNA decreased, free U4 snRNA increased, and U4/U6 hybrids decreased slightly. These results suggest that Prp3p is required for formation of stable U4/U6 snRNPs and for assembly of the U4/U6.U5 tri-snRNP from its component snRNPs. Upon inactivation of Prp3p, spliceosomes cannot assemble from prespliceosomes due to the absence of intact U4/U6.U5 tri-snRNPs. Prp3p is homologous to a human protein that is a component of U4/U6 snRNPs, exemplifying the conservation of splicing factors between yeast and metazoans.
Assuntos
Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/química , Northern Blotting , Centrifugação com Gradiente de Concentração , Sondas de DNA/química , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/genética , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Testes de Precipitina , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Saccharomyces cerevisiae/genética , Cloreto de Sódio/farmacologia , Spliceossomos/metabolismoRESUMO
Nuclear RNA splicing occurs in an RNA-protein complex, termed the spliceosome. U4/U6 snRNP is one of four essential small nuclear ribonucleoprotein (snRNP) particles (U1, U2, U5 and U4/U6) present in the spliceosome. U4/U6 snRNP contains two snRNAs (U4 and U6) and a number of proteins. We report here the identification and characterization of two human genes encoding U4/U6-associated splicing factors, Hprp3p and Hprp4p, respectively. Hprp3p is a 77 kDa protein, which is homologous to the Saccharomyces cerevisiae splicing factor Prp3p. Amino acid sequence analysis revealed two putative homologues in Caenorhabditis elegans and Schizosaccharomyces pombe. Polyclonal antibodies against Hprp3p were generated with His-tagged Hprp3p over-produced in Escherichia coli . This splicing factor can co-immunoprecipitate with U4, U6 and U5 snRNAs, suggesting that it is present in the U4/U6.U5 tri-snRNP. Hprp4p is a 58 kDa protein homologous to yeast splicing factor Prp4p. Like yeast Prp4p, the human homologue contains repeats homologous to the beta-subunit of G-proteins. These repeats are called WD repeats because there is a highly conserved dipeptide of tryptophan and aspartic acid present at the end of each repeat. The primary amino acid sequence homology between human Hprp4p and yeast Prp4p led to the discovery of two additional WD repeats in yeast Prp4p. Structural homology between these human and yeast splicing factors and the beta-subunit of G-proteins has been identified by sequence-similarity comparison and analysis of the protein folding by threading. Structural models of Hprp4p and Prp4p with a seven-blade beta-propeller topology have been generated based on the structure of beta-transducin. Hprp3p and Hprp4p have been shown to interact with each other and the first 100 amino acids of Hprp3p are not essential for this interaction. These experiments suggest that both Hprp3p and Hprp4p are components of human spliceosomes.
Assuntos
Proteínas Nucleares/genética , Proteínas Serina-Treonina Quinases/genética , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Spliceossomos/genética , Sequência de Aminoácidos , Núcleo Celular/genética , Núcleo Celular/metabolismo , DNA Complementar/isolamento & purificação , Células HeLa , Humanos , Immunoblotting , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Processamento de RNA , Sequências Repetitivas de Ácido Nucleico , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Spliceossomos/enzimologiaRESUMO
The Saccharomyces cerevisiae nucleolar protein Nop4p is necessary for processing of rRNA and assembly of 60 S ribosomal subunits. Nop4p is unusual in that it contains four RNA recognition motifs (RRMs) including one noncanonical RRM, as well as several auxiliary motifs, two acidic regions between the RRMs, and a carboxyl-terminal domain rich in lysines and arginines. To examine the functional importance of these motifs, we isolated random and site-directed mutations in NOP4 and assayed Nop4p function in vivo. Our results indicate that each RRM is essential for Nop4p function; mutations in conserved aromatic residues of Nop4p cause a temperature-sensitive lethal phenotype and diminished 60 S ribosomal subunit production. The carboxyl-terminal 68 amino acids are important but apparently not essential; carboxyl-terminal truncation of Nop4p causes slow growth, decreased ribosome production, and mislocalization of Nop4p. Deletion of both acidic motifs is lethal but replacement of most of the acidic residues with alanine has no apparent phenotype. These acidic residues may serve as spacers or tethers to separate the RRMs.
Assuntos
Nucléolo Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , RNA Fúngico/metabolismo , Ribonucleoproteínas Nucleolares Pequenas , Ribossomos/fisiologia , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Sequência Conservada , Primers do DNA , Proteínas Fúngicas/biossíntese , Genótipo , Substâncias Macromoleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Proteínas Nucleares/biossíntese , Reação em Cadeia da Polimerase , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Ribossomos/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Alinhamento de SequênciaRESUMO
The PRP31 gene encodes a factor essential for the splicing of pre-mRNA in Saccharomyces cerevisiae. Cell extracts derived from a prp31-1 strain fail to form mature spliceosomes upon heat inactivation, although commitment complexes and prespliceosome complexes are detected under these conditions. Coimmunoprecipitation experiments indicate that Prp31p is associated both with the U4/U6 x U5 tri-snRNP and, independently, with the prespliceosome prior to assembly of the tri-snRNP into the splicing complex. Nondenaturing gel electrophoresis and glycerol gradient analyses demonstrate that while Prp31p may play a role in maintaining the assembly or stability of tri-snRNPs, functional protein is not essential for the formation of U4/U6 or U4/U6 x U5 snRNPs. These results suggest that Prp31p is involved in recruiting the U4/U6 x U5 tri-snRNP to prespliceosome complexes or in stabilizing these interactions.
Assuntos
Proteínas Fúngicas/metabolismo , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/ultraestrutura , Ribonucleoproteína Nuclear Pequena U5/ultraestrutura , Proteínas de Saccharomyces cerevisiae , Spliceossomos/ultraestrutura , Substâncias Macromoleculares , Precursores de Ácido Nucleico/metabolismo , RNA Fúngico/metabolismo , RNA Mensageiro/metabolismo , RNA Nuclear Pequeno/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Saccharomyces cerevisiae , Spliceossomos/metabolismoRESUMO
The availability of the complete sequence of the Saccharomyces cerevisiae genome has allowed a comprehensive analysis of the genes encoding cytoplasmic ribosomal proteins in this organism. On the basis of this complete inventory a new nomenclature for the yeast ribosomal proteins is presented.
Assuntos
Proteínas Fúngicas/classificação , Proteínas Ribossômicas/classificação , Saccharomyces cerevisiae/química , Terminologia como AssuntoRESUMO
Contributions of the highly conserved K270 and its neighboring K271 in the C-terminal region of the yeast ribosomal protein L1 to 5S rRNA binding and ribosome assembly were examined by in vivo and in vitro studies on the consequences of 14 substitution mutations. All mutant proteins with a single amino-acid substitution at either position were able to bind 5S rRNA in vitro to an extent comparable to the wild-type. Yeast cells expressing these mutant proteins, except the K270G mutant, grew at nearly normal rates. Mutations of K270 appeared to produce more demonstrable effects than those of K271. The double mutant K270,271G bound RNA poorly and yeast cells expressing the mutant protein grew 30% slower. Double mutants K270,271E and K270,271R were lethal, although the mutant protein was assembled into the 60S ribosomal subunits. The resultant subunits were not stable leading eventually to cell death. The in vitro RNA binding ability of the respective protein was reduced by 60% and 20%. Taken together, the present data identified K270 and K271 as important amino-acid residues in the function of the yeast ribosomal protein L1.
Assuntos
Proteínas Fúngicas/metabolismo , RNA Ribossômico 5S/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Sequência de Aminoácidos , Proteínas Fúngicas/genética , Genes Letais , Lisina/genética , Lisina/metabolismo , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Estrutura Secundária de Proteína , Proteínas de Ligação a RNA/genética , Proteínas Ribossômicas/genética , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Leveduras/genética , Leveduras/metabolismoRESUMO
We have identified six new genes whose products are necessary for the splicing of nuclear pre-mRNA in the yeast Saccharomyces cerevisiae. A collection of 426 temperature-sensitive yeast strains was generated by EMS mutagenesis. These mutants were screened for pre-mRNA splicing defects by an RNA gel blot assay, using the intron- containing CRY1 and ACT1 genes as hybridization probes. We identified 20 temperature-sensitive mutants defective in pre-mRNA splicing. Twelve appear to be allelic to the previously identified prp2, prp3, prp6, prp16/prp23, prp18, prp19 or prp26 mutations that cause defects in spliceosome assembly or the first or second step of splicing. One is allelic to SNR14 encoding U4 snRNA. Six new complementation groups, prp29-prp34, were identified. Each of these mutants accumulates unspliced pre-mRNA at 37 degrees C and thus is blocked in spliceosome assembly or early steps of pre-mRNA splicing before the first cleavage and ligation reaction. The prp29 mutation is suppressed by multicopy PRP2 and displays incomplete patterns of complementation with prp2 alleles, suggesting that the PRP29 gene product may interact with that of PRP2. There are now at least 42 different gene products, including the five spliceosomal snRNAs and 37 different proteins that are necessary for pre-mRNA splicing in Saccharomyces cerevisiae. However, the number of yeast genes identifiable by this approach has not yet been exhausted.
Assuntos
Genes Fúngicos , Precursores de RNA/metabolismo , Splicing de RNA/genética , RNA Fúngico/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alelos , Núcleo Celular/metabolismo , RNA Helicases DEAD-box , Sondas de DNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Letais , Teste de Complementação Genética , Mutação , Fenótipo , Spliceossomos/genética , Spliceossomos/metabolismo , TemperaturaRESUMO
The pre-mRNA splicing factor Prp31p was identified in a screen of temperature-sensitive yeast strains for those exhibiting a splicing defect upon shift to the non- permissive temperature. The wild-type PRP31 gene was cloned and shown to be essential for cell viability. The PRP31 gene is predicted to encode a 60 kDa polypeptide. No similarities with other known splicing factors or motifs indicative of protein-protein or RNA-protein interaction domains are discernible in the predicted amino acid sequence. A PRP31 allele bearing a triple repeat of the hemagglutinin epitope has been generated. The tagged protein is functional in vivo and a single polypeptide species of the predicted size was detected by Western analysis with proteins from yeast cell extracts. Functional Prp31p is required for the processing of pre-mRNA species both in vivo and in vitro, indicating that the protein is directly involved in the splicing pathway.
Assuntos
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Precursores de RNA/metabolismo , RNA Fúngico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Clonagem Molecular , Mutação , Processamento Pós-Transcricional do RNA , Splicing de RNA/genética , Mapeamento por Restrição , TemperaturaRESUMO
Yeast ribosomal protein L1 binds to 5 S rRNA and can be released from 60 S ribosomal subunits as an intact ribonucleoprotein particle. To identify residues important for binding of Saccharomyces cerevisiae rpL1 to 5 S rRNA and assembly into functional ribosomes, we have isolated mutant alleles of the yeast RPL1 gene by site-directed and random mutagenesis. The rpl1 mutants were assayed for association of rpL1 with 5 S rRNA in vivo and in vitro and assembly of rpL1 into functional 60 S ribosomal subunits. Consistent with previous data implicating the importance of the carboxyl-terminal 47 amino acids of rpL1 for binding to 5 S rRNA in vitro, we find that deletion of the carboxyl-terminal 8, 25, or 44 amino acids of rpL1 confers lethality in vivo. Missense mutations elsewhere in rpL1 also affect its function, indicating that multiple regions of rpL1 are important for its association with 5 S rRNA and assembly into ribosomes.
Assuntos
RNA Ribossômico 5S/metabolismo , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Sequência de Aminoácidos , Animais , Sequência de Bases , Galinhas , Genes Fúngicos , Genótipo , Dados de Sequência Molecular , Mutagênese , Mutagênese Sítio-Dirigida , Oligodesoxirribonucleotídeos , Polirribossomos/metabolismo , Ratos , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/isolamento & purificação , Ribonucleoproteínas/metabolismo , Proteínas Ribossômicas/genética , Saccharomyces cerevisiae/genética , Homologia de Sequência de Aminoácidos , XenopusRESUMO
The Saccharomyces cerevisiae CRY1 and CRY2 genes, which encode ribosomal protein rp59, are expressed at a 10:1 ratio in wild-type cells. Deletion or inactivation of CRY1 leads to 5- to 10-fold-increased levels of CRY2 mRNA. Ribosomal protein 59, expressed from either CRY1 or CRY2, represses expression of CRY2 but not CRY1. cis-Acting elements involved in repression of CRY2 were identified by assaying the expression of CRY2-lacZ gene fusions and promoter fusions in CRY1 CRY2 and cry1-delta CRY2 strains. Sequences necessary and sufficient for regulation lie within the transcribed region of CRY2, including the 5' exon and the first 62 nucleotides of the intron. Analysis of CRY2 point mutations corroborates these results and indicates that both the secondary structure and sequence of the regulatory region of CRY2 pre-mRNA are necessary for repression. The regulatory sequence of CRY2 is phylogenetically conserved; a very similar sequence is present in the 5' end of the RP59 gene of the yeast Kluyveromyces lactis. Wild-type cells contain very low levels of both CRY2 pre-mRNA and CRY2 mRNA. Increased levels of CRY2 pre-mRNA are present in mtr mutants, defective in mRNA transport, and in upf1 mutants, defective in degradation of cytoplasmic RNA, suggesting that in wild-type repressed cells, unspliced CRY2 pre-mRNA is degraded in the cytoplasm. Taken together, these results suggest that feedback regulation of CRY2 occurs posttranscriptionally. A model for coupling ribosome assembly and regulation of ribosomal protein gene expression is proposed.
Assuntos
Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Precursores de RNA/genética , RNA Mensageiro/genética , Proteínas Ribossômicas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Sequência de Bases , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Homeostase , Ligação de Hidrogênio , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Oligodesoxirribonucleotídeos/química , Biossíntese de Proteínas , Precursores de RNA/química , RNA Fúngico/genética , RNA Mensageiro/química , Sequências Reguladoras de Ácido Nucleico , Ribossomos/metabolismo , Ribossomos/ultraestrutura , Alinhamento de Sequência , Homologia de Sequência do Ácido NucleicoRESUMO
Translation elongation factor 1beta (EF-1beta) catalyzes the exchange of bound GDP for GTP on EF-1alpha. The lethality of a null allele of the TEF5 gene encoding EF-1beta in Saccharomyces cerevisiae was suppressed by extra copies of the TEF2 gene encoding EF-1alpha. The strains with tef5::TRP1 suppressed by extra copies of TEF were slow growing, cold sensitive, hypersensitive to inhibitors of translation elongation and showed increased phenotypic suppression of +1 frameshift and UAG nonsense mutations. Nine dominant mutant alleles of TEF2 that cause increased suppression of frameshift mutations also suppressed the lethality of tef5::TRP1. Most of the strains in which tef5::TRP1 is suppressed by dominant mutant alleles of TEF2 grew more slowly and were more antibiotic sensitive than strains with tef5::TRP1 is suppressed by wild-type TEF2. Two alleles, TEF2-4 and TEF2-10, interact with tef5::TRP1 to produce strains that showed doubling times similar to tef5::TRP1 strains containing extra copies of wild-type TEF2. These strains were less cold sensitive, drug sensitive and correspondingly less efficient suppressor of +1 frameshift mutations. These phenotypes indicate that translation and cell growth are highly sensitive to changes in EF-1alpha and EF-1beta activity.
Assuntos
Genes Fúngicos , Genes Letais , Fatores de Alongamento de Peptídeos/biossíntese , Saccharomyces cerevisiae/genética , Alelos , Expressão Gênica , Genes Dominantes , Genótipo , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Fator 1 de Elongação de Peptídeos , Fatores de Alongamento de Peptídeos/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Especificidade da Espécie , Supressão Genética , TemperaturaRESUMO
Pre-mRNA processing occurs by assembly of splicing factors on the substrate to form the spliceosome followed by two consecutive RNA cleavage-ligation reactions. The Prp2 protein hydrolyzes ATP and is required for the first reaction (Yean SL, Lin RJ, 1991, Mol Cell Biol 11:5571-5577; Kim SH, Smith J, Claude A, Lin RJ, 1992, EMBO J 11:2319-2326). The Saccharomyces cerevisiae SPP2 gene was previously identified as a high-copy suppressor of temperature-sensitive prp2 mutants (Last RL, Maddock JR, Woolford JL Jr, 1987, Genetics 117:619-631). We have characterized the function of Spp2p in vivo and in vitro. Spp2p is an essential protein required for the first RNA cleavage reaction in vivo. Depletion of Spp2p from yeast cells results in accumulation of unspliced pre-mRNAs. A temperature-sensitive spp2-1 mutant accumulates pre-mRNAs in vivo and is unable to undergo the first splicing reaction in vitro. However, spliceosomal complexes are assembled in extracts prepared from the mutant. We show that Spp2p function is required after spliceosome assembly but prior to the first reaction. Spp2p associates with the spliceosome before the first RNA cleavage reaction and is likely to be released from the spliceosome following ATP hydrolysis by Prp2p. The Prp2 and Spp2 proteins are capable of physically interacting with each other. These results suggest that Spp2p interacts with Prp2p in the spliceosome prior to the first cleavage-ligation reaction. Spp2p is the first protein that has been found to interact with a DEAD/H box splicing factor.
Assuntos
Proteínas Fúngicas/metabolismo , Splicing de RNA , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Spliceossomos/metabolismo , Trifosfato de Adenosina/metabolismo , Alelos , Sequência de Aminoácidos , Sequência de Bases , RNA Helicases DEAD-box , Complexos Endossomais de Distribuição Requeridos para Transporte , Proteínas Fúngicas/genética , Genes Fúngicos , Teste de Complementação Genética , Dados de Sequência Molecular , Mutação , Ligação Proteica , Precursores de RNA/metabolismo , RNA Mensageiro/metabolismo , Supressão Genética , TemperaturaRESUMO
Spliceosome assembly during pre-mRNA splicing requires the correct positioning of the U1, U2, U4/U6, and U5 small nuclear ribonucleoprotein particles (snRNPs) on the precursor mRNA. The structure and integrity of these snRNPs are maintained in part by the association of the snRNAs with core snRNP (Sm) proteins. The Sm proteins also play a pivotal role in metazoan snRNP biogenesis. We have characterized a Saccharomyces cerevisiae gene, SMD3, that encodes the core snRNP protein Smd3. The Smd3 protein is required for pre-mRNA splicing in vivo. Depletion of this protein from yeast cells affects the levels of U snRNAs and their cap modification, indicating that Smd3 is required for snRNP biogenesis. Smd3 is structurally and functionally distinct from the previously described yeast core polypeptide Smd1. Although Smd3 and Smd1 are both associated with the spliceosomal snRNPs, overexpression of one cannot compensate for the loss of the other. Thus, these two proteins have distinct functions. A pool of Smd3 exists in the yeast cytoplasm. This is consistent with the possibility that snRNP assembly in S. cerevisiae, as in metazoans, is initiated in the cytoplasm from a pool of RNA-free core snRNP protein complexes.
Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Splicing de RNA , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Spliceossomos/química , Sequência de Aminoácidos , Sequência de Bases , Citoplasma/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Dados de Sequência Molecular , Oligodesoxirribonucleotídeos/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Alinhamento de Sequência , Homologia de Sequência de AminoácidosRESUMO
The Saccharomyces cerevisiae NOP4 gene was isolated by screening a lambda gt11 yeast genomic DNA library with a monoclonal antibody against a yeast nucleolar protein. NOP4 encodes a 78 kDa protein that contains two prototypical RNA recognition motifs (RRMs) flanking an imperfect RRM lacking characteristic RNP1 and RNP2 motifs. In addition, there is a fourth incomplete RRM. NOP4 is a single copy essential gene present on chromosome XVI, between RAD1 and PEP4. To examine the function of Nop4p, we constructed a conditional null allele of NOP4 by placing this gene under the control of the glucose-repressible GAL1 promoter. When cells are shifted from galactose-containing medium to glucose-containing medium, NOP4 transcription is terminated, Nop4 protein is depleted and cell growth is impaired. Nop4 protein depletion results in diminished accumulation of 60S ribosomal subunits, assignable to a defect in ribosome biogenesis arising from a lack of production of mature 25S rRNA from 27S precursor rRNA.
Assuntos
Proteínas Fúngicas/genética , Proteínas Nucleares/genética , Processamento Pós-Transcricional do RNA , RNA Ribossômico/metabolismo , Ribonucleoproteínas Nucleolares Pequenas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Fúngico , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/fisiologia , Genes Fúngicos , Genes Letais , Dados de Sequência Molecular , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas Nucleares/fisiologia , Precursores de RNA/metabolismo , RNA Fúngico/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Mapeamento por Restrição , Ribossomos/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMO
A gene encoding a yeast homologue of translation elongation factor 1 gamma (EF-1 gamma), TEF3, was isolated as a gene dosage extragenic suppressor of the cold-sensitive phenotype of the Saccharomyces cerevisiae drs2 mutant. The drs2 mutant is deficient in the assembly of 40S ribosomal subunits. We have identified a second gene, TEF4, that encodes a protein highly related to both the Tef3p protein (Tef3p), and EF-1 gamma isolated from other organisms. In contrast to TEF3, the TEF4 gene contains an intron. Gene disruptions showed that neither gene is required for mitotic growth. Haploid spores containing disruptions of both genes are viable and have no defects in ribosomal subunit composition or polyribosomes. Unlike TEF3, extra copies of TEF4 do not suppress the cold-sensitive 40S ribosomal subunit deficiency of a drs2 strain. Low-stringency genomic Southern hybridization analysis indicates there may be additional yeast genes related to TEF3 and TEF4.
Assuntos
Proteínas Fúngicas/genética , Genes Fúngicos , Fatores de Alongamento de Peptídeos/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Animais , Southern Blotting , Humanos , Íntrons , Mitose/genética , Dados de Sequência Molecular , Fator 1 de Elongação de Peptídeos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Supressão GenéticaRESUMO
A gene encoding a thioredoxin protein was identified in the chloroplast genome of the rhodophyte Porphyra yezoensis. The P. yezoensis trxA gene contains 324 bp and is transcribed into a 0.7 kb messenger RNA. Analysis of the transcription start site demonstrates that canonical chloroplast -10 and -35 sequences are not present. The deduced amino acid sequence of the thioredoxin gene from the red algae has the greatest similarity to type m thioredoxins, providing strong support for the hypothesis that type m thioredoxins in photosynthetic eukaryotes originated from an engulfed bacterial endosymbiont. Hybridization analysis of nuclear and chloroplast DNAs from several members of the phyla Chromophyta and Rhodophyta using P. yezoensis DNA as a probe demonstrated strong hybridization to the chloroplast and nuclear genomes of Griffithsia pacifica and a weak cross-hybridization to the chromophyte P. foliaceum. The G. pacifica chloroplast gene has a 66% identity with the P. yezoensis DNA, contains conserved active site amino acid residues, but lacks a methionine start codon.