Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Langmuir ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934899

RESUMO

DNA-templated nanofabrication presents an innovative approach to creating self-assembled nanoscale metal-semiconductor-based Schottky contacts, which can advance nanoelectronics. Herein, we report the successful fabrication of metal-semiconductor Schottky contacts using a DNA origami scaffold. The scaffold, consisting of DNA strands organized into a specific linear architecture, facilitates the competitive arrangement of Au and CdS nanorods, forming heterojunctions, and addresses previous limitations in low electrical conductance making DNA-templated electronics with semiconductor nanomaterials. Electroless gold plating extends the Au nanorods and makes the necessary electrical contacts. Tungsten electrical connection lines are further created by electron beam-induced deposition. Electrical characterization reveals nonlinear Schottky barrier behavior, with electrical conductance ranging from 0.5 × 10-4 to 1.7 × 10-4 S. The conductance of these DNA-templated junctions is several million times higher than with our prior Schottky contacts. Our research establishes an innovative self-assembly approach with applicable metal and semiconductor materials for making highly conductive nanoscale Schottky contacts, paving the way for the future development of DNA-based nanoscale electronics.

2.
Lab Chip ; 24(8): 2202-2207, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38525691

RESUMO

In this work, we present a new 3D printing technique that enables the realization of native digital micro-mirror device (DMD) resolution in negative features of a 3D printed part without improving 3D printer hardware and demonstrate the fabrication of fully integrated, biocompatible isoporous membranes with pore sizes as small as 7 µm. We utilize this technique to construct a microfluidic device that mimics an established organ-on-a-chip configuration, including an integrated isoporous membrane. Two cell populations are seeded on either side of the membrane and imaged as a proof of concept for other organ-on-a-chip applications. These 3D printed isoporous membranes can be leveraged for a wide variety of other mechanical and biological applications, creating new possibilities for seamlessly integrated, 3D printed microfluidic devices.


Assuntos
Dispositivos Lab-On-A-Chip , Impressão Tridimensional
4.
Anal Chim Acta ; 1296: 342338, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401930

RESUMO

BACKGROUND: Preterm birth (PTB) is a leading cause of neonatal mortality, such that the need for a rapid and accurate assessment for PTB risk is critical. Here, we developed a 3D printed microfluidic system that integrated solid-phase extraction (SPE) and microchip electrophoresis (µCE) of PTB biomarkers, enabling the combination of biomarker enrichment and labeling with µCE separation and fluorescence detection. RESULTS: Reversed-phase SPE monoliths were photopolymerized in 3D printed devices. Microvalves in the device directed sample between the SPE monolith and the injection cross-channel in the serpentine µCE channel. Successful on-chip preconcentration, labeling and µCE separation of four PTB-related polypeptides were demonstrated in these integrated microfluidic devices. We further show the ability of these devices to handle complex sample matrices through the successful analysis of labeled PTB biomarkers spiked into maternal blood serum. The detection limit was 7 nM for the PTB biomarker, corticotropin releasing factor, in 3D printed SPE-µCE integrated devices. SIGNIFICANCE: This work represents the first successful demonstration of integration of SPE and µCE separation of disease-linked biomarkers in 3D printed microfluidic devices. These studies open up promising possibilities for rapid bioanalysis of medically relevant analytes.


Assuntos
Eletroforese em Microchip , Nascimento Prematuro , Feminino , Recém-Nascido , Humanos , Eletroforese em Microchip/métodos , Nascimento Prematuro/diagnóstico , Biomarcadores/análise , Extração em Fase Sólida/métodos , Dispositivos Lab-On-A-Chip , Impressão Tridimensional
5.
Anal Bioanal Chem ; 416(9): 2031-2037, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37470814

RESUMO

3D printers utilize cutting-edge technologies to create three-dimensional objects and are attractive tools for engineering compact microfluidic platforms with complex architectures for chemical and biochemical analyses. 3D printing's popularity is associated with the freedom of creating intricate designs using inexpensive instrumentation, and these tools can produce miniaturized platforms in minutes, facilitating fabrication scaleup. This work discusses key challenges in producing three-dimensional microfluidic structures using currently available 3D printers, addressing considerations about printer capabilities and software limitations encountered in the design and processing of new architectures. This article further communicates the benefits of using three-dimensional structures, including the ability to scalably produce miniaturized analytical systems and the possibility of combining them with multiple processes, such as mixing, pumping, pre-concentration, and detection. Besides increasing analytical applicability, such three-dimensional architectures are important in the eventual design of commercial devices since they can decrease user interferences and reduce the volume of reagents or samples required, making assays more reliable and rapid. Moreover, this manuscript provides insights into research directions involving 3D-printed microfluidic devices. Finally, this work offers an outlook for future developments to provide and take advantage of 3D microfluidic functionality in 3D printing. Graphical abstract Creating three-dimensional microfluidic structures using 3D printing will enable key advances and novel applications in (bio)chemical analysis.

6.
Anal Bioanal Chem ; 415(29-30): 7057-7065, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37801120

RESUMO

Mosquito-borne pathogens plague much of the world, yet rapid and simple diagnosis is not available for many affected patients. Using a custom stereolithography 3D printer, we created microfluidic devices with affinity monoliths that could retain, noncovalently attach a fluorescent tag, and detect oligonucleotide and viral RNA. We optimized the fluorescent binding and sample load times using an oligonucleotide sequence from chikungunya virus (CHIKV). We also tested the specificity of CHIKV capture relative to genetically similar Sindbis virus. Moreover, viral RNA from both viruses was flowed through capture columns to study the efficiency and specificity of the column for viral CHIKV. We detected ~107 loaded viral genome copies, which was similar to levels in clinical samples during acute infection. These results show considerable promise for development of this platform into a rapid mosquito-borne viral pathogen detection system.


Assuntos
Febre de Chikungunya , Vírus Chikungunya , Animais , Humanos , Febre de Chikungunya/diagnóstico , Microfluídica , Vírus Chikungunya/genética , Vírus Chikungunya/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , Oligonucleotídeos , Impressão Tridimensional
7.
Micromachines (Basel) ; 14(8)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37630125

RESUMO

We demonstrate a method to effectively 3D print microfluidic devices with high-resolution features using a biocompatible resin based on avobenzone as the UV absorber. Our method relies on spectrally shaping the 3D printer source spectrum so that it is fully overlapped by avobenzone's absorption spectrum. Complete overlap is essential to effectively limit the optical penetration depth, which is required to achieve high out-of-plane resolution. We demonstrate the high resolution in practice by 3D printing 15 µm square pillars in a microfluidic chamber, where the pillars are separated by 7.7 µm and are printed with 5 µm layers. Furthermore, we show reliable membrane valves and pumps using the biocompatible resin. Valves are tested to 1,000,000 actuations with no observable degradation in performance. Finally, we create a concentration gradient generation (CG) component and utilize it in two device designs for cell chemotaxis studies. The first design relies on an external dual syringe pump to generate source and sink flows to supply the CG channel, while the second is a complete integrated device incorporating on-chip pumps, valves, and reservoirs. Both device types are seeded with adherent cells that are subjected to a chemoattractant CG, and both show clear evidence of chemotactic cellular migration. Moreover, the integrated device demonstrates cellular migration comparable to the external syringe pump device. This demonstration illustrates the effectiveness of our integrated chemotactic assay approach and high-resolution biocompatible resin 3D printing fabrication process. In addition, our 3D printing process has been tuned for rapid fabrication, as printing times for the two device designs are, respectively, 8 and 15 min.

8.
J Chromatogr A ; 1706: 464242, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37595419

RESUMO

We employed digital light processing-stereolithography 3D printing to create microfluidic devices with different designs for microchip electrophoresis (µCE). Short or long straight channel, and two- or four-turn serpentine channel microfluidic devices with separation channel lengths of 1.3, 3.1, 3.0, and 4.7 cm, respectively, all with a cross injector design, were fabricated. We measured current as a function of time and voltage to determine a separation time window and conditions for the onset of Joule heating in these designs. Separations in these devices were evaluated by performing µCE and measuring theoretical plate counts for electric field strengths near and above the onset of Joule heating, with fluorescently labeled glycine and phenylalanine as model analytes. We further demonstrated µCE of peptides and proteins related to preterm birth risk, showing increased peak capacity and resolution compared to previous results with 3D printed microdevices. These results mark an important step forward in the use of 3D printed microfluidic devices for rapid bioanalysis by µCE.


Assuntos
Eletroforese em Microchip , Nascimento Prematuro , Recém-Nascido , Feminino , Humanos , Nascimento Prematuro/diagnóstico , Dispositivos Lab-On-A-Chip , Biomarcadores , Impressão Tridimensional
9.
Micromachines (Basel) ; 14(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37512597

RESUMO

New microfluidic lab-on-a-chip capabilities are enabled by broadening the toolkit of devices that can be created using microfabrication processes. For example, complex geometries made possible by 3D printing can be used to approach microfluidic design and application in new or enhanced ways. In this paper, we demonstrate three distinct designs for microfluidic one-way (check) valves that can be fabricated using digital light processing stereolithography (DLP-SLA) with a poly(ethylene glycol) diacrylate (PEGDA) resin, each with an internal volume of 5-10 nL. By mapping flow rate to pressure in both the forward and reverse directions, we compare the different designs and their operating characteristics. We also demonstrate pumps for each one-way valve design comprised of two one-way valves with a membrane valve displacement chamber between them. An advantage of such pumps is that they require a single pneumatic input instead of three as for conventional 3D-printed pumps. We also characterize the achievable flow rate as a function of the pneumatic control signal period. We show that such pumps can be used to create a single-stage diffusion mixer with significantly reduced pneumatic drive complexity.

10.
Trends Analyt Chem ; 1622023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37008739

RESUMO

3D printing, an additive manufacturing technology, has made significant inroads into improving systems for bioanalysis in recent years. This approach is particularly powerful due to the ease and flexibility in rapidly creating novel and complex designs for analytical applications. As such, 3D printing offers an emerging technology for creating systems for electrophoretic analysis. Here, we review 3D printing work on improving and miniaturizing capillary electrophoresis (CE), emphasizing publications from 2019‒2022. We describe enabling uses of 3D printing in interfacing upstream sample preparation or downstream detection with CE. Recent developments in miniaturized CE enabled by 3D printing are also elaborated, including key areas where 3D printing could further improve over the current state-of-the-art. Lastly, we highlight promising future trends for using 3D printing in miniaturizing CE and the significant potential for innovative advancements. 3D printing is poised to play a key role in moving forward miniaturized CE in the coming years.

11.
Anal Bioanal Chem ; 415(10): 1787-1789, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36869272
12.
Nanoscale ; 15(5): 2188-2196, 2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36633155

RESUMO

Directed placement of DNA origami could play a key role in future integrated nanoelectronic devices. Here we demonstrated the site-selective attachment of DNA origami on gold dots formed using a pattern transfer method through block copolymer self-assembly. First, a random copolymer brush layer is grafted on the Si surface and then poly (styrene-b-methylmethacrylate) block copolymer is spin-coated to give a hexagonal nanoarray after annealing. UV irradiation followed by acetic acid etching is used to remove the PMMA, creating cylindrical holes and then oxygen plasma etching removes the random copolymer layer inside those holes. Next, metal evaporation, followed by lift-off creates a gold dot array. We evaluated different ligand functionalization of Au dots, as well as DNA hybridization to attach DNA origami to the nanodots. DNA-coated Au nanorods are assembled on the DNA origami as a step towards creating nanowires and to facilitate electron microscopy characterization of the attachment of DNA origami on these Au nanodots. The DNA hybridization approach showed better DNA attachment to Au nanodots than localization by electrostatic interaction. This work contributes to the understanding of DNA-templated assembly, nanomaterials, and block copolymer nanolithography. Furthermore, the work shows potential for creating DNA-templated nanodevices and their placement in ordered arrays in future nanoelectronics.


Assuntos
Nanoestruturas , Nanotubos , Nanofios , Ouro , DNA , Polímeros
13.
Anal Bioanal Chem ; 415(4): 695-701, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36469054

RESUMO

Antimicrobial resistance remains a global threat with ~ 5 million deaths in 2019 alone and 10 million deaths projected every year by 2050. Current tools employed in the analysis of bacteria can be time inefficient, leading to delayed diagnosis and treatment. In this work, we develop a microfluidic setup capable of bacteria incubation and detection of growth in ~ 2 h. We fabricated polydimethylsiloxane (PDMS) microchips via soft lithography, enclosed microchannels by plasma bonding to glass, and utilized PDMS blocks for simplified connection of devices to a flow system. We generated uniform droplets enclosing zero, one or two bacteria within our devices, and incubated droplet-encapsulated bacteria with 100 × lower concentrations of a fluorescence probe of bacterial growth compared to prior work. We assessed bacterial growth via laser induced fluorescence after room temperature incubation for 2 h and obtained a range of signals corresponding to droplets with or without bacteria. Our devices allow for online droplet incubation, monitoring, detection, and tracking. Developing microfluidic chips for single bacteria studies will improve the analysis and treatment of antimicrobial resistance.


Assuntos
Anti-Infecciosos , Técnicas Analíticas Microfluídicas , Microfluídica , Bactérias
14.
Lab Chip ; 22(22): 4393-4408, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36282069

RESUMO

Many microfluidic processes rely heavily on precise temperature control. Though internally-contained heaters have been developed using traditional fabrication methods, they are limited in their ability to isothermally heat a precisely defined volume. Advances in 3D printing have led to high resolution printers capable of using bio-compatible materials and achieving geometry resolutions near 20 µm. 3D printing's ability to create arbitrary 3D structures with an arbitrary 3D orientation as opposed to traditional microfluidic fabrication methods enables new three-dimensional heater geometries to be created. As examples, we demonstrate three new 3D heater geometries: a non-planar serpentine channel, a tapered helical channel, and a diamond channel. These new geometries are shown through finite element simulation to isothermally heat microfluidic channels of cross section 200 µm × 200 µm with a 0.1 °C temperature difference along up to 91% of a 10 mm length, compared to designs from the literature that are only able to have that same temperature distance over several µms. Finally, a set of design rules to create isothermal regions in 3D based on the desired temperature, heater pitch, heater gradient, and radial space around a target volume are detailed.


Assuntos
Dispositivos Lab-On-A-Chip , Impressão Tridimensional , Temperatura , Microfluídica
15.
Polymers (Basel) ; 14(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35808588

RESUMO

Additive manufacturing technology is an emerging method for rapid prototyping, which enables the creation of complex geometries by one-step fabrication processes through a layer-by-layer approach. The simplified fabrication achieved with this methodology opens the way towards a more efficient industrial production, with applications in a great number of fields such as biomedical devices. In biomedicine, blood is the gold-standard biofluid for clinical analysis. However, blood cells generate analytical interferences in many test procedures; hence, it is important to separate plasma from blood cells before analytical testing of blood samples. In this research, a custom-made resin formulation combined with a high-resolution 3D printing methodology were used to achieve a methodology for the fast prototype optimization of an operative plasma separation modular device. Through an iterative process, 17 different prototypes were designed and fabricated with printing times ranging from 5 to 12 min. The final device was evaluated through colorimetric analysis, validating this fabrication approach for the qualitative assessment of plasma separation from whole blood. The 3D printing method used here demonstrates the great contribution that this microfluidic technology will bring to the plasma separation biomedical devices market.

17.
Mikrochim Acta ; 189(5): 204, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484354

RESUMO

A 3D printed, automated, pressure-driven injection microfluidic system for microchip electrophoresis (µCE) of preterm birth (PTB)-related peptides and proteins has been developed. Functional microvalves were formed, either with a membrane thickness of 5 µm and a layer exposure time of 450 ms or with a membrane thickness of 10 µm and layer exposure times of 300-350 ms. These valves allowed for control of fluid flow in device microchannels during sample injection for µCE separation. Device design and µCE conditions using fluorescently labeled amino acids were optimized. A sample injection time of 0.5 s and a separation voltage of 450 V (460 V/cm) yielded the best separation efficiency and resolution. We demonstrated the first µCE separation with pressure-driven injection in a 3D printed microfluidic device using fluorescently labeled PTB biomarkers and 532 nm laser excitation. Detection limits for two PTB biomarkers, peptide 1 and peptide 2, for an injection time of 1.5 s were 400 pM and 15 nM, respectively, and the linear detection range for peptide 2 was 50-400 nM. This 3D printed microfluidic system holds promise for future integration of on-chip sample preparation processes with µCE, offering promising possibilities for PTB risk assessment.


Assuntos
Eletroforese em Microchip , Nascimento Prematuro , Biomarcadores/análise , Eletroforese em Microchip/métodos , Feminino , Humanos , Recém-Nascido , Dispositivos Lab-On-A-Chip , Peptídeos , Gravidez , Nascimento Prematuro/diagnóstico , Impressão Tridimensional
18.
Analyst ; 147(4): 734-743, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35103723

RESUMO

In an effort to develop biomarker-based diagnostics for preterm birth (PTB) risk, we created 3D printed microfluidic devices with multiplexed immunoaffinity monoliths to selectively extract multiple PTB biomarkers. The equilibrium dissociation constant for each monoclonal antibody toward its target PTB biomarker was determined. We confirmed the covalent attachment of three different individual antibodies to affinity monoliths using fluorescence imaging. Three different PTB biomarkers were successfully extracted from human blood serum using their respective single-antibody columns. Selective binding of each antibody toward its target biomarker was observed. Finally, we extracted and eluted three PTB biomarkers from depleted human blood serum in multiplexed immunoaffinity columns in 3D printed microfluidic devices. This is the first demonstration of multiplexed immunoaffinity extraction of PTB biomarkers in 3D printed microfluidic devices.


Assuntos
Dispositivos Lab-On-A-Chip , Nascimento Prematuro , Biomarcadores , Humanos , Recém-Nascido , Nascimento Prematuro/diagnóstico , Impressão Tridimensional , Soro
20.
Anal Bioanal Chem ; 414(1): 167-180, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34345949

RESUMO

Microfluidic devices can provide a versatile, cost-effective platform for disease diagnostics and risk assessment by quantifying biomarkers. In particular, simultaneous testing of several biomarkers can be powerful. Here, we critically review work from the previous 4 years up to February 2021 on developing microfluidic devices for multiplexed detection of biomarkers from samples. We focus on two principal approaches: electrical and optical detection methods that can distinguish and quantify biomarkers. Both electrical and spectroscopic multiplexed detection strategies are being employed to reach limits of detection below clinical sample levels. Some of the most promising strategies for point-of-care assays involve inexpensive materials such as paper-based microfluidic devices, or portable and accessible detectors such as smartphones. This review does not comprehensively cover all multiplexed microfluidic biomarker studies, but rather provides a critical evaluation of key work and suggests promising prospects for future advancement in this field. Electrical and optical multiplexing are powerful approaches for microfluidic biomarker analysis.


Assuntos
Biomarcadores/química , Técnicas Eletroquímicas/instrumentação , Dispositivos Lab-On-A-Chip , Dispositivos Ópticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA