Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 13(46): 32126-32136, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37920762

RESUMO

Despite their potential for oxidation of persistent environmental pollutants, the development of rational and sustainable laccase nanozymes with efficient catalytic performance remains a challenge. Herein, fungal-produced chitosan-copper (CsCu) is proposed as a rational and sustainable bionanozyme with intrinsic laccase activity. The CsCu nanozyme was prepared by in situ reduction of copper on chitosan extracted from Irpex sp. isolate AWK2 a native fungus, from traditional fermented foods, yielding a low molecular weight chitosan with a 70% degree of deacetylation. Characterizations of the nanozyme using SEM-EDX, XRD, and XPS confirmed the presence of a multi-oxidation state copper on the chitosan matrix which is consistent with the composition of natural laccase. The laccase memetic activity was investigated using 2,4-DP as a substrate which oxidized to form a reddish-pink color with 4-AP (λmax = 510 nm). The CsCu nanozyme showed 38% higher laccase activity than the pristine Cu NPs at pH 9, indicating enhanced activity in the presence of chitosan structure. Further, CsCu showed significant stability in harsh conditions and exhibited a lower Km (0.26 mM) which is competitive with that reported for natural laccase. Notably, the nanozyme converted 92% of different phenolic substrates in 5 h, signifying a robust performance for environmental remediation purposes.

2.
ACS Omega ; 8(45): 43178-43187, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38024715

RESUMO

Industrial effluents containing phenolic compounds are a major public health concern and thus require effective and robust remediation technologies. Although laccase-like nanozymes are generally recognized as being catalytically efficient in oxidizing phenols, their support materials often lack resilience in harsh environments. Herein, bacterial nanocellulose (BNC) was introduced as a sustainable, strong, biocompatible, and environmentally friendly biopolymer for the synthesis of a laccase-like nanozyme (BNC/Cu). A native bacterial strain that produces nanocellulose was isolated from black tea broth fermented for 1 month. The isolate that produced BNC was identified as Bacillus sp. strain T15, and it can metabolize hexoses, sucrose, and less expensive substrates, such as molasses. Further, BNC/Cu nanozyme was synthesized using the in situ reduction of copper on the BNC. Characterization of the nanozyme by scanning electron microscopy (SEM) and X-ray diffraction (XRD) confirmed the presence of the copper nanoparticles dispersed in the layered sheets of BNC. The laccase-mimetic activity was assessed using the chromogenic redox reaction between 2,4-dichlorophenol (2,4-DP) and 4-aminoantipyrine (4-AP) with characteristic absorption at 510 nm. Remarkably, BNC/Cu has 50.69% higher catalytic activity than the pristine Cu NPs, indicating that BNC served as an effective biomatrix to disperse Cu NPs. Also, the bionanozyme showed the highest specificity toward 2,4-DP with a Km of 0.187 mM, which was lower than that of natural laccase. The bionanozyme retained catalytic activity across a wider temperature range with optimum activity at 85 °C, maintaining 38% laccase activity after 11 days and 46.77% activity after the fourth cycle. The BNC/Cu bionanozyme could efficiently oxidize more than 70% of 1,4-dichlorophenol and phenol in 5 h. Thereby, the BNC/Cu bionanozyme is described here as having an efficient ability to mimic laccase in the oxidation of phenolic compounds that are commonly released into the environment by industry.

3.
Nanomaterials (Basel) ; 13(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36903717

RESUMO

Combination therapy for cancer is expected for the synergetic effect of different treatments, and the development of promising carrier materials is demanded for new therapeutics. In this study, nanocomposites including functional nanoparticles (NPs) such as samarium oxide NP for radiotherapy and gadolinium oxide NP as a magnetic resonance imaging agent were synthesized and chemically combined with iron oxide NP-embedded or carbon dot-coating iron oxide NP-embedded carbon nanohorn carriers, where iron oxide NP is a hyperthermia reagent and carbon dot exerts effects on photodynamic/photothermal treatments. These nanocomposites exerted potential for delivery of anticancer drugs (doxorubicin, gemcitabine, and camptothecin) even after being coated with poly(ethylene glycol). The co-delivery of these anticancer drugs played better drug-release efficacy than the independent drug delivery, and the thermal and photothermal procedures enlarged the drug release. Thus, the prepared nanocomposites can be expected as materials to develop advanced medication for combination treatment.

4.
ACS Omega ; 8(51): 48764-48774, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38162792

RESUMO

Peroxidase memetic nanozymes with their free radical-mediated catalytic actions proved as efficacious antibacterial agents for combating bacterial resistance. Herein, nanocellulose (NC) extracted from Eragrostis teff straw was used to prepare NC/Fe3O4/Ag peroxidase nanozyme as an antibacterial and wound healing agent. Characterization of the nanozyme with XRD, FTIR, SEM-EDX, and XPS confirmed the presence of silver NPs and the magnetite phase of iron oxide dispersed on nanocellulose. The peroxidase activity of the prepared nanozyme was examined using TMB and H2O2 as substrates which turned blue in acidic pH (λmax = 652 nm). With a lower Km (0.387 mM), the nanozyme showed a comparable affinity for TMB with that reported for the HRP enzyme. Furthermore, the nanozyme remained efficient over a broader temperature range while maintaining 61.53% of its activity after the fourth cycle. In vitro, antibacterial tests against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacterial strains showed that NC/Fe3O4/Ag exhibits concentration-dependent and enhanced antibacterial effect for Escherichia coli compared to NC and NC-Fe3O4 and negative control. Furthermore, the wound-healing performance of the NC-Fe3O4-Ag nanozyme was investigated in vivo using an animal model (mice). The nanozyme showed 30% higher wound healing performance compared to the control base ointment and is comparable with the commercial nitrofurazone ointment. The results show the potential of the prepared nanozyme for wound-healing purposes.

5.
ACS Appl Mater Interfaces ; 14(30): 35027-35039, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35875888

RESUMO

Graphene oxide (GO), single-walled carbon nanohorn (CNHox), and nitrogen-doped CNH (N-CNH) were functionalized with fluorinated poly(ethylene glycol) (F-PEG) and/or with a fluorinated dendrimer (F-DEN) to prepare a series of assembled nanocomposites (GO/F-PEG, CNHox/F-PEG, N-CNH/F-PEG, N-CNH/F-DEN, and N-CNH/F-DEN/F-PEG) that provide effective multisite O2 reservoirs. In all cases, the O2 uptake increased with time and saturated after 10-20 min. When graphitic carbons (GO and CNHox) were coated with F-PEG, the O2 uptake doubled. The O2 loading was slightly higher in N-CNH compared to CNHox. Notably, coating N-CNH with F-DEN or F-PEG, or with both F-DEN and F-PEG, was more effective. The best performance was obtained with the N-CNH/F-DEN/F-PEG nanocomposite. The O2 uptake kinetics and mechanisms were analyzed in terms of the Langmuir adsorption equation based on a multibinding site assumption. This allowed the precise determination of multiple oxygen binding sites, including on the graphitic structure and in the dendrimer, F-DEN, and F-PEG. After an initial rapid, relatively limited release, the amount of O2 trapped in the nanomaterials remained high (>95%). This amount was marginally lower for the functionalized composites, but the oxygen stored was reserved for longer times. Finally, it is shown that these systems can generate singlet oxygen after irradiation by a light-emitting diode, and this production correlates with the amount of O2 loaded. Thus, it was anticipated that the present nanocomposites hierarchically assembled from components with different characters and complementary affinities for oxygen can be useful as O2 reservoirs for singlet oxygen generation to kill bacteria and viruses and to perform photodynamic therapy.

6.
ACS Biomater Sci Eng ; 5(6): 2926-2934, 2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33405595

RESUMO

In view of preparing effective nitric oxide gas carriers, a fluorinated poly(ethylene glycol) (F-PEG) was noncovalently conjugated with acid-treated graphene oxide (GO) to prepare the composite of F-PEG@GO. When the persistence of NO gas doped on GO and F-PEG@GO was investigated for 3 h, the conserved NO gas decreased from 49.00 ± 7.06 to 2.17 ± 1.36 nmol/mg carrier and from 58.51 ± 6.02 to 4.58 ± 2.22 nmol/mg carrier, respectively. The adsorption of F-PEG on GO and the doping of NO on GO and F-PEG@GO were declarative by the increase of distance between GO sheets, and the NO doping was also clarified by infrared absorption and X-ray photoelectron spectroscopies. The antibacterial effect was higher for NO-conserved F-PEG@GO than for NO-conserved GO and more effective against Staphylococcus aureus than against Escherichia coli. It is evident that the coating of F-PEG on GO is preferable for advancing the loading efficiency, the stability and the biomedical efficacy of NO gas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA