Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 48(7): 1199-1210, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29697856

RESUMO

Increasing evidence points to an important role for neutrophils in participating in the pathogenesis of the human demyelinating disease MS and the animal model EAE. Therefore, a better understanding of the signals controlling migration of neutrophils as well as evaluating the role of these cells in demyelination is important to define cellular components that contribute to disease in MS patients. In this study, we examined the functional role of the chemokine CXCL1 in contributing to neuroinflammation and demyelination in EAE. Using transgenic mice in which expression of CXCL1 is under the control of a tetracycline-inducible promoter active within glial fibrillary acidic protein-positive cells, we have shown that sustained CXCL1 expression within the CNS increased the severity of clinical and histologic disease that was independent of an increase in the frequency of encephalitogenic Th1 and Th17 cells. Rather, disease was associated with enhanced recruitment of CD11b+ Ly6G+ neutrophils into the spinal cord. Targeting neutrophils resulted in a reduction in demyelination arguing for a role for these cells in myelin damage. Collectively, these findings emphasize that CXCL1-mediated attraction of neutrophils into the CNS augments demyelination suggesting that this signaling pathway may offer new targets for therapeutic intervention.


Assuntos
Sistema Nervoso Central/imunologia , Quimiocina CXCL1/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Neutrófilos/imunologia , Medula Espinal/imunologia , Animais , Autoantígenos/imunologia , Antígeno CD11b/metabolismo , Células Cultivadas , Quimiocina CXCL1/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Terapia de Alvo Molecular , Glicoproteína Mielina-Oligodendrócito/imunologia , Inflamação Neurogênica , Infiltração de Neutrófilos , Fragmentos de Peptídeos/imunologia , Transdução de Sinais , Medula Espinal/patologia
2.
Infect Immun ; 86(3)2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29203547

RESUMO

Cryptococcus neoformans is a common environmental yeast and opportunistic pathogen responsible for 15% of AIDS-related deaths worldwide. Mortality primarily results from meningoencephalitis, which occurs when fungal cells disseminate to the brain from the initial pulmonary infection site. A key C. neoformans virulence trait is the polysaccharide capsule. Capsule shields C. neoformans from immune-mediated recognition and destruction. The main capsule component, glucuronoxylomannan (GXM), is found both attached to the cell surface and free in the extracellular space (as exo-GXM). Exo-GXM accumulates in patient serum and cerebrospinal fluid at microgram/milliliter concentrations, has well-documented immunosuppressive properties, and correlates with poor patient outcomes. However, it is poorly understood whether exo-GXM release is regulated or the result of shedding during normal capsule turnover. We demonstrate that exo-GXM release is regulated by environmental cues and inversely correlates with surface capsule levels. We identified genes specifically involved in exo-GXM release that do not alter surface capsule thickness. The first mutant, the liv7Δ strain, released less GXM than wild-type cells when capsule was not induced. The second mutant, the cnag_00658Δ strain, released more exo-GXM under capsule-inducing conditions. Exo-GXM release observed in vitro correlated with polystyrene adherence, virulence, and fungal burden during murine infection. Additionally, we found that exo-GXM reduced cell size and capsule thickness under capsule-inducing conditions, potentially influencing dissemination. Finally, we demonstrated that exo-GXM prevents immune cell infiltration into the brain during disseminated infection and highly inflammatory intracranial infection. Our data suggest that exo-GXM performs a distinct role from capsule GXM during infection, altering cell size and suppressing inflammation.


Assuntos
Sistema Nervoso Central/citologia , Criptococose/microbiologia , Cryptococcus neoformans/patogenicidade , Polissacarídeos Fúngicos/farmacologia , Animais , Sistema Nervoso Central/imunologia , Criptococose/patologia , Cryptococcus neoformans/imunologia , Cryptococcus neoformans/metabolismo , Feminino , Polissacarídeos Fúngicos/genética , Polissacarídeos Fúngicos/metabolismo , Pneumopatias Fúngicas/microbiologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação , Virulência
3.
Methods ; 133: 81-90, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29050826

RESUMO

Neural stem cell (NSC) cultures have been considered technically challenging for time-lapse analysis due to high motility, photosensitivity, and growth at confluent densities. We have tested feasibility of long-term live-cell time-lapse analysis for NSC migration and differentiation studies. Here, we describe a method to study the dynamics of cell cycle, migration, and lineage selection in cultured multipotent mouse or human NSCs using single-cell tracking during a long-term, 7-14 day live-cell time-lapse analysis. We used in-house made PDMS inserts with five microwells on a glass coverslip petri-dish to constrain NSC into the area of acquisition during long-term live-cell imaging. In parallel, we have defined image acquisition settings for single-cell tracking of cell cycle dynamics using Fucci-reporter mouse NSC for 7 days as well as lineage selection and migration using human NSC for 14 days. Overall, we show that adjustments of live-cell analysis settings can extend the time period of single-cell tracking in mouse or human NSC from 24-72 h up to 7-14 days and potentially longer. However, we emphasize that experimental use of repeated fluorescence imaging will require careful consideration of controls during acquisition and analysis.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Neurais/citologia , Análise de Célula Única/métodos , Imagem com Lapso de Tempo/métodos , Linhagem da Célula/fisiologia , Movimento Celular/fisiologia , Rastreamento de Células/métodos , Humanos , Células-Tronco Neurais/fisiologia
4.
J Neuroinflammation ; 13(1): 240, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27604627

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are noncoding RNAs that modulate cellular gene expression, primarily at the post-transcriptional level. We sought to examine the functional role of miR-155 in a model of viral-induced neuroinflammation. METHODS: Acute encephalomyelitis and immune-mediated demyelination were induced by intracranial injection with the neurotropic JHM strain of mouse hepatitis virus (JHMV) into C57BL/6 miR-155 (+/+) wildtype (WT) mice or miR-155 (-/-) mice. Morbidity and mortality, viral load and immune cell accumulation in the CNS, and spinal cord demyelination were assessed at defined points post-infection. T cells harvested from infected mice were used to examine cytolytic activity, cytokine activity, and expression of certain chemokine receptors. To determine the impact of miR-155 on trafficking, T cells from infected WT or miR-155 (-/-) mice were adoptively transferred into RAG1 (-/-) mice, and T cell accumulation into the CNS was assessed using flow cytometry. Statistical significance was determined using the Mantel-Cox log-rank test or Student's T tests. RESULTS: Compared to WT mice, JHMV-infected miR-155 (-/-) mice developed exacerbated disease concomitant with increased morbidity/mortality and an inability to control viral replication within the CNS. In corroboration with increased susceptibility to disease, miR-155 (-/-) mice had diminished CD8(+) T cell responses in terms of numbers, cytolytic activity, IFN-γ secretion, and homing to the CNS that corresponded with reduced expression of the chemokine receptor CXCR3. Both IFN-γ secretion and trafficking were impaired in miR-155 (-/-) , virus-specific CD4(+) T cells; however, expression of the chemokine homing receptors analyzed on CD4(+) cells was not affected. Except for very early during infection, there were not significant differences in macrophage infiltration into the CNS between WT and miR-155 (-/-) JHMV-infected mice, and the severity of demyelination was similar at 14 days p.i. between WT and miR-155 (-/-) JHMV-infected mice. CONCLUSIONS: These findings support a novel role for miR-155 in host defense in a model of viral-induced encephalomyelitis. Specifically, miR-155 enhances antiviral T cell responses including cytokine secretion, cytolytic activity, and homing to the CNS in response to viral infection. Further, miR-155 can play either a host-protective or host-damaging role during neuroinflammation depending on the disease trigger.


Assuntos
Movimento Celular/genética , Infecções por Coronavirus/complicações , MicroRNAs/metabolismo , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/terapia , Linfócitos T/fisiologia , Transferência Adotiva/métodos , Animais , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Sistema Nervoso Central/virologia , Infecções por Coronavirus/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Doenças do Sistema Nervoso/etiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA