Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Epilepsia ; 64 Suppl 3: S49-S61, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37194746

RESUMO

Direct cortical stimulation has been applied in epilepsy for nearly a century and has experienced a renaissance, given unprecedented opportunities to probe, excite, and inhibit the human brain. Evidence suggests stimulation can increase diagnostic and therapeutic utility in patients with drug-resistant epilepsies. However, choosing appropriate stimulation parameters is not a trivial issue, and is further complicated by epilepsy being characterized by complex brain state dynamics. In this article derived from discussions at the ICTALS 2022 Conference (International Conference on Technology and Analysis for Seizures), we succinctly review the literature on cortical stimulation applied acutely and chronically to the epileptic brain for localization, monitoring, and therapeutic purposes. In particular, we discuss how stimulation is used to probe brain excitability, discuss evidence on the usefulness of stimulation to trigger and stop seizures, review therapeutic applications of stimulation, and finally discuss how stimulation parameters are impacted by brain dynamics. Although research has advanced considerably over the past decade, there are still significant hurdles to optimizing use of this technique. For example, it remains unclear to what extent short timescale diagnostic biomarkers can predict long-term outcomes and to what extent these biomarkers add information to already existing biomarkers from passive electroencephalographic recordings. Further questions include the extent to which closed loop stimulation offers advantages over open loop stimulation, what the optimal closed loop timescales may be, and whether biomarker-informed stimulation can lead to seizure freedom. The ultimate goal of bioelectronic medicine remains not just to stop seizures but rather to cure epilepsy and its comorbidities.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/terapia , Encéfalo , Convulsões/terapia , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/terapia , Estimulação Encefálica Profunda/métodos , Biomarcadores
2.
Epilepsia ; 64(4): 962-972, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764672

RESUMO

OBJECTIVE: High-frequency oscillations are considered among the most promising interictal biomarkers of the epileptogenic zone in patients suffering from pharmacoresistant focal epilepsy. However, there is no clear definition of pathological high-frequency oscillations, and the existing detectors vary in methodology, performance, and computational costs. This study proposes relative entropy as an easy-to-use novel interictal biomarker of the epileptic tissue. METHODS: We evaluated relative entropy and high-frequency oscillation biomarkers on intracranial electroencephalographic data from 39 patients with seizure-free postoperative outcome (Engel Ia) from three institutions. We tested their capability to localize the epileptogenic zone, defined as resected contacts located in the seizure onset zone. The performance was compared using areas under the receiver operating curves (AUROCs) and precision-recall curves. Then we tested whether a universal threshold can be used to delineate the epileptogenic zone across patients from different institutions. RESULTS: Relative entropy in the ripple band (80-250 Hz) achieved an average AUROC of .85. The normalized high-frequency oscillation rate in the ripple band showed an identical AUROC of .85. In contrast to high-frequency oscillations, relative entropy did not require any patient-level normalization and was easy and fast to calculate due to its clear and straightforward definition. One threshold could be set across different patients and institutions, because relative entropy is independent of signal amplitude and sampling frequency. SIGNIFICANCE: Although both relative entropy and high-frequency oscillations have a similar performance, relative entropy has significant advantages such as straightforward definition, computational speed, and universal interpatient threshold, making it an easy-to-use promising biomarker of the epileptogenic zone.


Assuntos
Eletroencefalografia , Epilepsia , Humanos , Entropia , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Eletrocorticografia/métodos , Biomarcadores
3.
Brain ; 146(1): 109-123, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36383415

RESUMO

Loss of consciousness is a hallmark of many epileptic seizures and carries risks of serious injury and sudden death. While cortical sleep-like activities accompany loss of consciousness during focal impaired awareness seizures, the mechanisms of loss of consciousness during focal to bilateral tonic-clonic seizures remain unclear. Quantifying differences in markers of cortical activation and ictal recruitment between focal impaired awareness and focal to bilateral tonic-clonic seizures may also help us to understand their different consequences for clinical outcomes and to optimize neuromodulation therapies. We quantified clinical signs of loss of consciousness and intracranial EEG activity during 129 focal impaired awareness and 50 focal to bilateral tonic-clonic from 41 patients. We characterized intracranial EEG changes both in the seizure onset zone and in areas remote from the seizure onset zone with a total of 3386 electrodes distributed across brain areas. First, we compared the dynamics of intracranial EEG sleep-like activities: slow-wave activity (1-4 Hz) and beta/delta ratio (a validated marker of cortical activation) during focal impaired awareness versus focal to bilateral tonic-clonic. Second, we quantified differences between focal to bilateral tonic-clonic and focal impaired awareness for a marker validated to detect ictal cross-frequency coupling: phase-locked high gamma (high-gamma phased-locked to low frequencies) and a marker of ictal recruitment: the epileptogenicity index. Third, we assessed changes in intracranial EEG activity preceding and accompanying behavioural generalization onset and their correlation with electromyogram channels. In addition, we analysed human cortical multi-unit activity recorded with Utah arrays during three focal to bilateral tonic-clonic seizures. Compared to focal impaired awareness, focal to bilateral tonic-clonic seizures were characterized by deeper loss of consciousness, even before generalization occurred. Unlike during focal impaired awareness, early loss of consciousness before generalization was accompanied by paradoxical decreases in slow-wave activity and by increases in high-gamma activity in parieto-occipital and temporal cortex. After generalization, when all patients displayed loss of consciousness, stronger increases in slow-wave activity were observed in parieto-occipital cortex, while more widespread increases in cortical activation (beta/delta ratio), ictal cross-frequency coupling (phase-locked high gamma) and ictal recruitment (epileptogenicity index). Behavioural generalization coincided with a whole-brain increase in high-gamma activity, which was especially synchronous in deep sources and could not be explained by EMG. Similarly, multi-unit activity analysis of focal to bilateral tonic-clonic revealed sustained increases in cortical firing rates during and after generalization onset in areas remote from the seizure onset zone. Overall, these results indicate that unlike during focal impaired awareness, the neural signatures of loss of consciousness during focal to bilateral tonic-clonic consist of paradoxical increases in cortical activation and neuronal firing found most consistently in posterior brain regions. These findings suggest differences in the mechanisms of ictal loss of consciousness between focal impaired awareness and focal to bilateral tonic-clonic and may account for the more negative prognostic consequences of focal to bilateral tonic-clonic.


Assuntos
Epilepsias Parciais , Convulsões , Humanos , Convulsões/diagnóstico , Encéfalo , Eletroencefalografia/métodos , Inconsciência
4.
Epilepsia ; 64(2): e16-e22, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36385467

RESUMO

Deep brain stimulation and responsive neurostimulation (RNS) use high-frequency stimulation (HFS) per the pivotal trials and manufacturer-recommended therapy protocols. However, not all patients respond to HFS. In this retrospective case series, 10 patients implanted with the RNS System were programmed with low-frequency stimulation (LFS) to treat their seizures; nine of these patients were previously treated with HFS (100 Hz or greater). LFS was defined as frequency < 10 Hz. Burst duration was increased to at least 1000 ms. With HFS, patients had a median seizure reduction (MSR) of 13% (interquartile range [IQR] = -67 to 54) after a median of 19 months (IQR = 8-49). In contrast, LFS was associated with a 67% MSR (IQR = 13-95) when compared to HFS and 76% MSR (IQR = 43-91) when compared to baseline prior to implantation. Charge delivered per hour and pulses per day were not significantly different between HFS and LFS, although time stimulated per day was longer for LFS (228 min) than for HFS (7 min). There were no LFS-specific adverse effects reported by any of the patients. LFS could represent an alternative, effective method for delivering stimulation in focal drug-resistant epilepsy patients treated with the RNS System.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Humanos , Estimulação Encefálica Profunda/métodos , Estudos Retrospectivos , Convulsões/terapia , Epilepsia Resistente a Medicamentos/terapia , Eletrodos Implantados
5.
Epilepsy Behav ; 137(Pt A): 108951, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36327647

RESUMO

BACKGROUND: Drug-resistant epilepsy (DRE) patients not amenable to epilepsy surgery can benefit from neurostimulation. Few data compare different neuromodulation strategies. OBJECTIVE: Compare five invasive neuromodulation strategies for the treatment of DRE: anterior thalamic nuclei deep brain stimulation (ANT-DBS), centromedian thalamic nuclei DBS (CM-DBS), responsive neurostimulation (RNS), chronic subthreshold stimulation (CSS), and vagus nerve stimulation (VNS). METHODS: Single center retrospective review and phone survey for patients implanted with invasive neuromodulation for 2004-2021. RESULTS: N = 159 (ANT-DBS = 38, CM-DBS = 19, RNS = 30, CSS = 32, VNS = 40). Total median seizure reduction (MSR) was 61 % for the entire cohort (IQR 5-90) and in descending order: CSS (85 %), CM-DBS (63 %), ANT-DBS (52 %), RNS (50 %), and VNS (50 %); p = 0.07. The responder rate was 60 % after a median follow-up time of 26 months. Seizure severity, life satisfaction, and quality of sleep were improved. Cortical stimulation (RNS and CSS) was associated with improved seizure reduction compared to subcortical stimulation (ANT-DBS, CM-DBS, and VNS) (67 % vs. 52 %). Effectiveness was similar for focal epilepsy vs. generalized epilepsy, closed-loop vs. open-loop stimulation, pediatric vs. adult cases, and high frequency (>100 Hz) vs. low frequency (<100 Hz) stimulation settings. Delivered charge per hour varied widely across approaches but was not correlated with improved seizure reduction. CONCLUSIONS: Multiple invasive neuromodulation approaches are available to treat DRE, but little evidence compares the approaches. This study used a uniform approach for single-center results and represents an effort to compare neuromodulation approaches.


Assuntos
Núcleos Anteriores do Tálamo , Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Adulto , Humanos , Criança , Estimulação Encefálica Profunda/métodos , Epilepsia/terapia , Epilepsia Resistente a Medicamentos/terapia , Convulsões , Resultado do Tratamento
7.
Front Neurol ; 12: 690404, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34326807

RESUMO

It is a major challenge in clinical epilepsy to diagnose and treat a disease characterized by infrequent seizures based on patient or caregiver reports and limited duration clinical testing. The poor reliability of self-reported seizure diaries for many people with epilepsy is well-established, but these records remain necessary in clinical care and therapeutic studies. A number of wearable devices have emerged, which may be capable of detecting seizures, recording seizure data, and alerting caregivers. Developments in non-invasive wearable sensors to measure accelerometry, photoplethysmography (PPG), electrodermal activity (EDA), electromyography (EMG), and other signals outside of the traditional clinical environment may be able to identify seizure-related changes. Non-invasive scalp electroencephalography (EEG) and minimally invasive subscalp EEG may allow direct measurement of seizure activity. However, significant network and computational infrastructure is needed for continuous, secure transmission of data. The large volume of data acquired by these devices necessitates computer-assisted review and detection to reduce the burden on human reviewers. Furthermore, user acceptability of such devices must be a paramount consideration to ensure adherence with long-term device use. Such devices can identify tonic-clonic seizures, but identification of other seizure semiologies with non-EEG wearables is an ongoing challenge. Identification of electrographic seizures with subscalp EEG systems has recently been demonstrated over long (>6 month) durations, and this shows promise for accurate, objective seizure records. While the ability to detect and forecast seizures from ambulatory intracranial EEG is established, invasive devices may not be acceptable for many individuals with epilepsy. Recent studies show promising results for probabilistic forecasts of seizure risk from long-term wearable devices and electronic diaries of self-reported seizures. There may also be predictive value in individuals' symptoms, mood, and cognitive performance. However, seizure forecasting requires perpetual use of a device for monitoring, increasing the importance of the system's acceptability to users. Furthermore, long-term studies with concurrent EEG confirmation are lacking currently. This review describes the current evidence and challenges in the use of minimally and non-invasive devices for long-term epilepsy monitoring, the essential components in remote monitoring systems, and explores the feasibility to detect and forecast impending seizures via long-term use of these systems.

8.
Neuroimage Clin ; 31: 102728, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34182408

RESUMO

Electrophysiological signals in the human motor system may change in different ways after deafferentation, with some studies emphasizing reorganization while others propose retained physiology. Understanding whether motor electrophysiology is retained over longer periods of time can be invaluable for patients with paralysis (e.g. ALS or brainstem stroke) when signals from sensorimotor areas may be used for communication or control over neural prosthetic devices. In addition, a maintained electrophysiology can potentially benefit the treatment of phantom limb pains through prolonged use of these signals in a brain-machine interface (BCI). Here, we were presented with the unique opportunity to investigate the physiology of the sensorimotor cortex in a patient with an amputated arm using electrocorticographic (ECoG) measurements. While implanted with an ECoG grid for clinical evaluation of electrical stimulation for phantom limb pain, the patient performed attempted finger movements with the contralateral (lost) hand and executed finger movements with the ipsilateral (healthy) hand. The electrophysiology of the sensorimotor cortex contralateral to the amputated hand remained very similar to that of hand movement in healthy people, with a spatially focused increase of high-frequency band (65-175 Hz; HFB) power over the hand region and a distributed decrease in low-frequency band (15-28 Hz; LFB) power. The representation of the three different fingers (thumb, index and little) remained intact and HFB patterns could be decoded using support vector learning at single-trial classification accuracies of >90%, based on the first 1-3 s of the HFB response. These results indicate that hand representations are largely retained in the motor cortex. The intact physiological response of the amputated hand, the high distinguishability of the fingers and fast temporal peak are encouraging for neural prosthetic devices that target the sensorimotor cortex.


Assuntos
Braço , Córtex Motor , Eletrocorticografia , Eletroencefalografia , Mãos , Humanos , Movimento
9.
Front Hum Neurosci ; 15: 644593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953663

RESUMO

We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer's disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.

10.
Epilepsia ; 61(9): 1869-1883, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32767763

RESUMO

Epilepsy is a heterogeneous condition with disparate etiologies and phenotypic and genotypic characteristics. Clinical and research aspects are accordingly varied, ranging from epidemiological to molecular, spanning clinical trials and outcomes, gene and drug discovery, imaging, electroencephalography, pathology, epilepsy surgery, digital technologies, and numerous others. Epilepsy data are collected in the terabytes and petabytes, pushing the limits of current capabilities. Modern computing firepower and advances in machine and deep learning, pioneered in other diseases, open up exciting possibilities for epilepsy too. However, without carefully designed approaches to acquiring, standardizing, curating, and making available such data, there is a risk of failure. Thus, careful construction of relevant ontologies, with intimate stakeholder inputs, provides the requisite scaffolding for more ambitious big data undertakings, such as an epilepsy data commons. In this review, we assess the clinical and research epilepsy landscapes in the big data arena, current challenges, and future directions, and make the case for a systematic approach to epilepsy big data.


Assuntos
Big Data , Ontologias Biológicas , Pesquisa Biomédica , Encéfalo/fisiopatologia , Eletrocorticografia , Epilepsia/fisiopatologia , Genômica , Comitês Consultivos , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Elementos de Dados Comuns , Segurança Computacional , Confidencialidade , Aprendizado Profundo , Registros Eletrônicos de Saúde , Epilepsia/diagnóstico por imagem , Epilepsia/genética , Epilepsia/patologia , Humanos , Disseminação de Informação , Neuroimagem , Apoio à Pesquisa como Assunto , Smartphone , Sociedades Médicas , Participação dos Interessados , Telemedicina , Dispositivos Eletrônicos Vestíveis
11.
Epilepsia ; 61(4): 776-786, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32219856

RESUMO

OBJECTIVE: Seizure unpredictability is rated as one of the most challenging aspects of living with epilepsy. Seizure likelihood can be influenced by a range of environmental and physiological factors that are difficult to measure and quantify. However, some generalizable patterns have been demonstrated in seizure onset. A majority of people with epilepsy exhibit circadian rhythms in their seizure times, and many also show slower, multiday patterns. Seizure cycles can be measured using a range of recording modalities, including self-reported electronic seizure diaries. This study aimed to develop personalized forecasts from a mobile seizure diary app. METHODS: Forecasts based on circadian and multiday seizure cycles were tested pseudoprospectively using data from 50 app users (mean of 109 seizures per subject). Individuals' strongest cycles were estimated from their reported seizure times and used to derive the likelihood of future seizures. The forecasting approach was validated using self-reported events and electrographic seizures from the Neurovista dataset, an existing database of long-term electroencephalography that has been widely used to develop forecasting algorithms. RESULTS: The validation dataset showed that forecasts of seizure likelihood based on self-reported cycles were predictive of electrographic seizures for approximately half the cohort. Forecasts using only mobile app diaries allowed users to spend an average of 67.1% of their time in a low-risk state, with 14.8% of their time in a high-risk warning state. On average, 69.1% of seizures occurred during high-risk states and 10.5% of seizures occurred in low-risk states. SIGNIFICANCE: Seizure diary apps can provide personalized forecasts of seizure likelihood that are accurate and clinically relevant for electrographic seizures. These results have immediate potential for translation to a prospective seizure forecasting trial using a mobile diary app. It is our hope that seizure forecasting apps will one day give people with epilepsy greater confidence in managing their daily activities.


Assuntos
Algoritmos , Previsões/métodos , Prontuários Médicos , Aplicativos Móveis , Convulsões , Eletroencefalografia , Humanos , Funções Verossimilhança , Convulsões/fisiopatologia , Autorrelato
12.
Brain Commun ; 1(1): fcz010, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31667473

RESUMO

Brain stimulation offers an alternative to focal resection for the treatment of focal drug-resistant epilepsy. Chronic subthreshold cortical stimulation is an individualized biomarker-informed open-loop continuous electrical stimulation approach targeting the seizure onset zone and surrounding areas. Before permanent implantation, trial stimulation is performed during invasive monitoring to assess stimulation efficacy as well as to optimize stimulation location and parameters by modifying interictal EEG biomarkers. We present clinical and neurophysiological results from a retrospective analysis of 21 patients, showing a median percent reduction in seizure frequency of 100% and responder rate of 89% with a median follow-up of 27 months. About 40% of patients were free of disabling seizures for a 12-month period or longer. We find that stimulation-induced decreases in delta (1-4 Hz) power and increases in alpha and beta (8-20 Hz) power during trial stimulation correlate with improved long-term clinical outcomes. These results suggest chronic subthreshold cortical stimulation may be an effective alternative approach to treating focal drug-resistant epilepsy and that short-term stimulation-related changes in spectral power may be a useful interictal biomarker and relate to long-term clinical outcome.

13.
Clin Neurophysiol ; 130(10): 1945-1953, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31465970

RESUMO

OBJECTIVE: When considering all patients with focal drug-resistant epilepsy, as high as 40-50% of patients suffer seizure recurrence after surgery. To achieve seizure freedom without side effects, accurate localization of the epileptogenic tissue is crucial before its resection. We investigate an automated, fast, objective mapping process that uses only interictal data. METHODS: We propose a novel approach based on multiple iEEG features, which are used to train a support vector machine (SVM) model for classification of iEEG electrodes as normal or pathologic using 30 min of inter-ictal recording. RESULTS: The tissue under the iEEG electrodes, classified as epileptogenic, was removed in 17/18 excellent outcome patients and was not entirely resected in 8/10 poor outcome patients. The overall best result was achieved in a subset of 9 excellent outcome patients with the area under the receiver operating curve = 0.95. CONCLUSION: SVM models combining multiple iEEG features show better performance than algorithms using a single iEEG marker. Multiple iEEG and connectivity features in presurgical evaluation could improve epileptogenic tissue localization, which may improve surgical outcome and minimize risk of side effects. SIGNIFICANCE: In this study, promising results were achieved in localization of epileptogenic regions by SVM models that combine multiple features from 30 min of inter-ictal iEEG recordings.


Assuntos
Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/fisiopatologia , Adulto , Idoso , Eletrodos Implantados , Eletroencefalografia/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
14.
Ann Clin Transl Neurol ; 5(9): 1062-1076, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30250863

RESUMO

OBJECTIVE: This study investigates high-frequency oscillations (HFOs; 65-600 Hz) as a biomarker of epileptogenic brain and explores three barriers to their clinical translation: (1) Distinguishing pathological HFOs (pathHFO) from physiological HFOs (physHFO). (2) Classifying tissue under individual electrodes as epileptogenic (3) Reproducing results across laboratories. METHODS: We recorded HFOs using intracranial EEG (iEEG) in 90 patients with focal epilepsy and 11 patients without epilepsy. In nine patients with epilepsy putative physHFOs were induced by cognitive or motor tasks. HFOs were identified using validated detectors. A support vector machine (SVM) using HFO features was developed to classify tissue under individual electrodes as normal or epileptogenic. RESULTS: There was significant overlap in the amplitude, frequency, and duration distributions for spontaneous physHFO, task induced physHFO, and pathHFO, but the amplitudes of the pathHFO were higher (P < 0.0001). High gamma pathHFO had the strongest association with seizure onset zone (SOZ), and were elevated on SOZ electrodes in 70% of epilepsy patients (P < 0.0001). Failure to resect tissue generating high gamma pathHFO was associated with poor outcomes (P < 0.0001). A SVM classified individual electrodes as epileptogenic with 63.9% sensitivity and 73.7% specificity using SOZ as the target. INTERPRETATION: A broader range of interictal pathHFO (65-600 Hz) than previously recognized are biomarkers of epileptogenic brain, and are associated with SOZ and surgical outcome. Classification of HFOs into physiological or pathological remains challenging. Classification of tissue under individual electrodes was demonstrated to be feasible. The open source data and algorithms provide a resource for future studies.

15.
Nat Commun ; 9(1): 2155, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858570

RESUMO

The rate of interictal high frequency oscillations (HFOs) is a promising biomarker of the seizure onset zone, though little is known about its consistency over hours to days. Here we test whether the highest HFO-rate channels are consistent across different 10-min segments of EEG during sleep. An automated HFO detector and blind source separation are applied to nearly 3000 total hours of data from 121 subjects, including 12 control subjects without epilepsy. Although interictal HFOs are significantly correlated with the seizure onset zone, the precise localization is consistent in only 22% of patients. The remaining patients either have one intermittent source (16%), different sources varying over time (45%), or insufficient HFOs (17%). Multiple HFO networks are found in patients with both one and multiple seizure foci. These results indicate that robust HFO interpretation requires prolonged analysis in context with other clinical data, rather than isolated review of short data segments.


Assuntos
Eletrocorticografia/métodos , Epilepsia/fisiopatologia , Convulsões/fisiopatologia , Sono/fisiologia , Adolescente , Adulto , Idoso , Encéfalo/patologia , Encéfalo/fisiopatologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
16.
Front Neurosci ; 12: 238, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692706

RESUMO

Functional magnetic resonance imaging (fMRI) is widely used in investigations of normal cognition and brain disease and in various clinical applications. Pharmacological fMRI (pharma-fMRI) is a relatively new application, which is being used to elucidate the effects and mechanisms of pharmacological modulation of brain activity. Characterizing the effects of neuropharmacological agents on regional brain activity using fMRI is challenging because drugs modulate neuronal function in a wide variety of ways, including through receptor agonist, antagonist, and neurotransmitter reuptake blocker events. Here we review current knowledge on neurotransmitter-mediated blood-oxygen-level dependent (BOLD) fMRI mechanisms as well as recently updated methodologies aimed at more fully describing the effects of neuropharmacologic agents on the BOLD signal. We limit our discussion to dopaminergic signaling as a useful lens through which to analyze and interpret neurochemical-mediated changes in the hemodynamic BOLD response. We also discuss the need for future studies that use multi-modal approaches to expand the understanding and application of pharma-fMRI.

17.
Clin Neurophysiol ; 129(5): 909-919, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29550651

RESUMO

OBJECTIVES: To develop quantitative measures for estimating seizure probability, we examine intracranial EEG data from patient groups with three qualitative seizure probabilities: patients with drug resistant focal epilepsy (high), these patients during cortical stimulation (intermediate), and patients who have no history of seizures (low). METHODS: Patients with focal epilepsy were implanted with subdural electrodes during presurgical evaluation. Patients without seizures were implanted during treatment with motor cortex stimulation for atypical facial pain. RESULTS: The rate and amplitude of spikes correlate with qualitative seizure probability across patient groups and with proximity to the seizure onset zone in focal epilepsy patients. Spikes occur earlier during the negative oscillation of underlying slow activity (0.5-2 Hz) when seizure probability is increased. Similarly, coupling between slow and fast activity is increased. CONCLUSIONS: There is likely a continuum of sharply contoured activity between non-epileptiform and epileptiform. Characteristics of spiking and how spikes relate to slow activity can be combined to predict seizure onset zones. SIGNIFICANCE: Intracranial EEG data from patients without seizures represent a unique comparison group and highlight changes seen in spiking and slow wave activity with increased seizure probability. Slow wave activity and related physiology are an important potential biomarker for estimating seizure probability.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrocorticografia , Epilepsias Parciais/fisiopatologia , Convulsões/fisiopatologia , Eletrodos Implantados , Feminino , Humanos , Masculino
18.
J Neurosci Methods ; 293: 6-16, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860077

RESUMO

BACKGROUND: High frequency oscillations (HFOs) are emerging as potentially clinically important biomarkers for localizing seizure generating regions in epileptic brain. These events, however, are too frequent, and occur on too small a time scale to be identified quickly or reliably by human reviewers. Many of the deficiencies of the HFO detection algorithms published to date are addressed by the CS algorithm presented here. NEW METHOD: The algorithm employs novel methods for: 1) normalization; 2) storage of parameters to model human expertise; 3) differentiating highly localized oscillations from filtering phenomena; and 4) defining temporal extents of detected events. RESULTS: Receiver-operator characteristic curves demonstrate very low false positive rates with concomitantly high true positive rates over a large range of detector thresholds. The temporal resolution is shown to be +/-∼5ms for event boundaries. Computational efficiency is sufficient for use in a clinical setting. COMPARISON WITH EXISTING METHODS: The algorithm performance is directly compared to two established algorithms by Staba (2002) and Gardner (2007). Comparison with all published algorithms is beyond the scope of this work, but the features of all are discussed. All code and example data sets are freely available. CONCLUSIONS: The algorithm is shown to have high sensitivity and specificity for HFOs, be robust to common forms of artifact in EEG, and have performance adequate for use in a clinical setting.


Assuntos
Algoritmos , Eletroencefalografia/métodos , Animais , Artefatos , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Cães , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Reações Falso-Positivas , Humanos , Curva ROC , Roedores , Processamento de Sinais Assistido por Computador , Fatores de Tempo
19.
Front Neurosci ; 11: 734, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29416498

RESUMO

The annual Deep Brain Stimulation (DBS) Think Tank provides a focal opportunity for a multidisciplinary ensemble of experts in the field of neuromodulation to discuss advancements and forthcoming opportunities and challenges in the field. The proceedings of the fifth Think Tank summarize progress in neuromodulation neurotechnology and techniques for the treatment of a range of neuropsychiatric conditions including Parkinson's disease, dystonia, essential tremor, Tourette syndrome, obsessive compulsive disorder, epilepsy and cognitive, and motor disorders. Each section of this overview of the meeting provides insight to the critical elements of discussion, current challenges, and identified future directions of scientific and technological development and application. The report addresses key issues in developing, and emphasizes major innovations that have occurred during the past year. Specifically, this year's meeting focused on technical developments in DBS, design considerations for DBS electrodes, improved sensors, neuronal signal processing, advancements in development and uses of responsive DBS (closed-loop systems), updates on National Institutes of Health and DARPA DBS programs of the BRAIN initiative, and neuroethical and policy issues arising in and from DBS research and applications in practice.

20.
Front Vet Sci ; 3: 107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27995128

RESUMO

RATIONALE: Barriers to developing treatments for human status epilepticus include the inadequacy of experimental animal models. In contrast, naturally occurring canine epilepsy is similar to the human condition and can serve as a platform to translate research from rodents to humans. The objectives of this study were to characterize the pharmacokinetics of an intravenous (IV) dose of topiramate (TPM) in dogs with epilepsy and evaluate its effect on intracranial electroencephalographic (iEEG) features. METHODS: Five dogs with naturally occurring epilepsy were used for this study. Three were getting at least one antiseizure drug as maintenance therapy including phenobarbital (PB). Four (ID 1-4) were used for the 10 mg/kg IV TPM + PO TPM study, and three (ID 3-5) were used for the 20 mg/kg IV TPM study. IV TPM was infused over 5 min at both doses. The animals were observed for vomiting, diarrhea, ataxia, and lethargy. Blood samples were collected at scheduled pre- and post-dose times. Plasma concentrations were measured using a validated high-performance liquid chromatography-mass spectrometry method. Non-compartmental and population compartmental modeling were performed (Phoenix WinNonLin and NLME) using plasma concentrations from all dogs in the study. iEEG was acquired in one dog. The difference between averaged iEEG energy levels at 15 min pre- and post-dose was assessed using a Kruskal-Wallis test. RESULTS: No adverse events were noted. TPM concentration-time profiles were best fit by a two compartment model. PB co-administration was associated with a 5.6-fold greater clearance and a ~4-fold shorter elimination half-life. iEEG data showed that TPM produced a significant energy increase at frequencies >4 Hz across all 16 electrodes within 15 min of dosing. Simulations suggested that dogs on an enzyme inducer would require 25 mg/kg, while dogs on non-inducing drugs would need 20 mg/kg to attain the target concentration (20-30 µg/mL) at 30 min post-dose. CONCLUSION: This study shows that IV TPM has a relatively rapid onset of action, loading doses appear safe, and the presence of PB necessitates a higher dose to attain targeted concentrations. Consequently, it is a good candidate for further evaluation for treatment of seizure emergencies in dogs and people.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA