Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phytomedicine ; 22(2): 262-70, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25765831

RESUMO

PURPOSE: Efficient strategies for the prevention of colon cancer are extensively being explored, including dietary intervention and the development of novel phytopharmaceuticals. Safe extracts of edible plants contain structurally diverse molecules that can effectively interfere with multi-factorial diseases such as colon cancer. In this study, we describe the antiproliferative and proapoptotic effects of ethanolic lemon balm (Melissa officinalis) leaves extract in human colon carcinoma cells. We further investigated the role of extra- and intracellular reactive oxygen species (ROS). METHODS: Antitumor effects of lemon balm extract (LBE) were investigated in HT-29 and T84 human colon carcinoma cells. Inhibition of proliferation was analyzed by DNA quantification. The causal cell cycle arrest was determined by flow cytometry of propidium iodide-stained cells and by immunoblotting of cell cycle regulator proteins. To investigate apoptosis, cleavage of caspases 3 and 7 was detected by immunoblotting and fluorescence microscopy. Phosphatidylserine externalization was measured by Annexin V assays. Mechanistic insights were gained by measurement of ROS using the indicator dyes CM-H2DCFDA and Cell ROX Green. RESULTS: After 3 and 4 days of treatment, LBE inhibited the proliferation of HT-29 and T84 colon carcinoma cells with an inhibitory concentration (IC50) of 346 and 120 µg/ml, respectively. Antiproliferative effects were associated with a G2/M cell cycle arrest and reduced protein expression of cyclin dependent kinases (CDK) 2, 4, 6, cyclin D3, and induced expression of cyclin-dependent kinase inhibitor 2C (p18) and 1A (p21). LBE (600 µg/ml) induced cleavage of caspases 3 and 7 and phosphatidylserine externalization. LBE-induced apoptosis was further associated with formation of ROS, whereas quenching of ROS by antioxidants completely rescued the colon carcinoma cells from LBE-induced apoptosis. CONCLUSIONS: Lemon balm (Melissa officinalis) extract inhibits the proliferation of colon carcinoma cells and induces apoptosis through formation of ROS. Taken together, LBE or subfractions thereof could be used for the prevention of colon cancer.


Assuntos
Apoptose/efeitos dos fármacos , Melissa/química , Extratos Vegetais/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Caspase 3/metabolismo , Caspase 7/metabolismo , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HT29 , Humanos , Concentração Inibidora 50
2.
Diabetologia ; 56(8): 1802-12, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23680913

RESUMO

AIMS/HYPOTHESIS: The nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is an important gene regulator in glucose and lipid metabolism. Unfortunately, PPARγ-activating drugs of the thiazolidinedione class provoke adverse side effects. As recently shown, amorfrutin A1 is a natural glucose-lowering compound that selectively modulates PPARγ. In this study we aimed to characterise, in vitro, a large spectrum of the amorfrutins and similar molecules, which we isolated from various plants. We further studied in vivo the glucose-lowering effects of the so far undescribed amorfrutin B, which featured the most striking PPARγ-binding and pharmacological properties of this family of plant metabolites. METHODS: Amorfrutins were investigated in vitro by binding and cofactor recruitment assays and by transcriptional activation assays in primary human adipocytes and murine preosteoblasts, as well as in vivo using insulin-resistant high-fat-diet-fed C57BL/6 mice treated for 27 days with 100 mg kg(-1) day(-1) amorfrutin B. RESULTS: Amorfrutin B showed low nanomolar binding affinity to PPARγ, and micromolar binding to the isotypes PPARα and PPARß/δ. Amorfrutin B selectively modulated PPARγ activity at low nanomolar concentrations. In insulin-resistant mice, amorfrutin B considerably improved insulin sensitivity, glucose tolerance and blood lipid variables after several days of treatment. Amorfrutin B treatment did not induce weight gain and furthermore showed liver-protecting properties. Additionally, amorfrutins had no adverse effects on osteoblastogenesis and fluid retention. CONCLUSIONS/INTERPRETATION: The application of plant-derived amorfrutins or synthetic analogues thereof constitutes a promising approach to prevent or treat complex metabolic diseases such as insulin resistance or type 2 diabetes.


Assuntos
Hipoglicemiantes/uso terapêutico , PPAR gama/agonistas , Salicilatos/uso terapêutico , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Resistência à Insulina/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
3.
Gene Ther ; 20(4): 460-4, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22895507

RESUMO

Adeno-associated virus (AAV) vectors are highly efficient for liver-targeted gene delivery in murine models and show promise in early phase human clinical trials. This efficiency is capsid-dependent and was only achieved after discovery that the AAV2 vector genome could be trans-encapsidated into the capsids of other AAV serotypes. This confers novel host-vector biology and target tissue tropism. Optimal exploitation of the growing number of AAV vector pseudo-serotypes, however, requires detailed context-dependent characterisation of transduction performance. In this study, we compared the pattern and efficiency of gene delivery to the adult mouse liver following intraportal and intraperitoneal injection of vectors pseudo-serotyped with known hepatotropic capsids from AAV type 7, 8, 9 and rhesus 10. Vectors pseudo-serotyped with these hepatotropic capsids proved relatively efficient irrespective of administration route, with higher transgene expression in males despite equivalent vector genome delivery in females. Transgene expression was predominantly centrilobular in contrast to the AAV2 capsid, which gave a periportal pattern of expression. Most intriguingly, vector genome performance appeared to be delivery route-dependent, consistent with the possibility of in vivo capsid modification. These data not only inform the experimental use of AAV vectors, but also provide insight into novel aspects of host-vector biology requiring further focused analysis.


Assuntos
Dependovirus/genética , Vetores Genéticos/administração & dosagem , Fígado/metabolismo , Transdução Genética/métodos , Animais , Capsídeo/metabolismo , Dependovirus/metabolismo , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Injeções Intraperitoneais , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos C57BL , Veia Porta , Distribuição Tecidual , Transgenes/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA