Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 390
Filtrar
1.
Int J Genomics ; 2024: 2708223, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39295962

RESUMO

SQUAMOSA promoter-binding protein-like (SPL) gene family, a group of plant-specific transcription factors, played crucial roles in regulating plant growth, development, signal transduction, and stress response. This study focuses on the SPL gene family in the fast-growing Eucalyptus grandis, employing bioinformatics approaches to identify and analyze the gene physiochemical characteristics, conserved domains, structural composition, chromosomal distribution, phylogenetic relationships, cis-acting elements, and their expression patterns in various tissues and stress treatments. Twenty-three SPL genes were identified in E. grandis, which uneven distributed across seven chromosomes and classified into five groups. Prediction of cis-acting elements revealed that these genes might be related to light, hormone, and stress responses. Furthermore, EgSPL9 and EgSPL23, mainly expressed in the stem apex and lateral branches, seem to be involved in hormone stress resistance. Our study provides insights into the potential functions of the EgSPL genes in plant growth, stress response, and hormone transduction, offering valuable perspectives for subsequent research into their biological roles.

2.
Pharmacol Res ; 208: 107385, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39245190

RESUMO

Arteriosclerotic cerebral small vessel disease (aCSVD) is a major cause of stroke and dementia. Although its underlying pathogenesis remains poorly understood, both inflammaging and gut microbiota dysbiosis have been hypothesized to play significant roles. This study investigated the role of gut microbiota in the pathogenesis of aCSVD through a comparative analysis of the gut microbiome and metabolome between CSVD patients and healthy controls. The results showed that patients with aCSVD exhibited a marked reduction in potentially beneficial bacterial species, such as Faecalibacterium prausnitzli and Roseburia intestinalis, alongside an increase in taxa from Bacteroides and Proteobacteria. Integrated metagenomic and metabolomic analyses revealed that alterations in microbial metabolic pathways, including LPS biosynthesis and phenylalanine-tyrosine metabolism, were associated with the status of aCSVD. Our findings indicated that microbial LPS biosynthesis and phenylalanine-tyrosine metabolism potentially influenced the symptoms and progression of aCSVD via pro-inflammatory effect and modulation of systemic neurotransmitters, respectively. These results imply that gut microbiota characteristics may serve as indicators for early detection of aCSVD and as potential gut-directed therapeutic intervention target.


Assuntos
Eixo Encéfalo-Intestino , Doenças de Pequenos Vasos Cerebrais , Disbiose , Microbioma Gastrointestinal , Neurotransmissores , Humanos , Doenças de Pequenos Vasos Cerebrais/metabolismo , Doenças de Pequenos Vasos Cerebrais/microbiologia , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Neurotransmissores/metabolismo , Disbiose/microbiologia , Metabolômica , Bactérias/metabolismo , Bactérias/genética , Metaboloma , Multiômica
3.
Anim Nutr ; 18: 246-256, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39281048

RESUMO

The aim of this study was to investigate the reasons for the differences in lipid accumulation between lean and obese pigs. The bile acids with varying levels within two types of pigs were found and then in vitro experiments were conducted to identify whether these bile acids can directly affect lipid accumulation. Fourteen pigs, including seven lean and seven obese pigs with body weights of approximately 80 kg, were fed the same diet at an amount approximately equivalent to 3% of their respective body weights daily for 42 d. In vitro, 3T3-L1 preadipocytes were cultured in medium with high glucose levels and were differentiated into mature adipocytes using differentiation medium. Then, bile acids were added to mature adipocytes for 4 d. The results showed that there was a difference in body lipids levels and gut microbiota composition between obese and lean pigs (P < 0.05). According to the results of gut microbial function prediction, the bile acid biosynthesis in colonic digesta of obese pigs were different from that in lean pig. Sixty-five bile acids were further screened by metabolomics, of which 4 were upregulated (P < 0.05) and 2 were downregulated (P < 0.05) in obese pigs compared to lean pigs. The results of the correlation analysis demonstrated that chenodeoxycholic acid-3-ß-D-glucuronide (CDCA-3Gln) and ω-muricholic acid (ω-MCA) had a negative correlation with abdominal fat weight and abdominal fat rate, while isoallolithocholic acid (IALCA) was positively associated with crude fat in the liver and abdominal fat rate. There was a positive correlation between loin muscle area and CDCA-3Gln and ω-MCA (P < 0.05), however, IALCA and 3-oxodeoxycholic acid (3-oxo-DCA) were negatively associated with loin eye muscle area (P < 0.05). Isoallolithocholic acid increased the gene expression of peroxisome proliferator-activated receptor gamma (PPARG) and the number of lipid droplets (P < 0.05), promoting the lipid storage when IALCA was added to 3T3-L1 mature adipocytes in vitro. In conclusion, the concentration of bile acids, especially gut microbiota related-secondary bile acids, in obese pigs was different from that in lean pigs, which may contribute to lipid accumulation within obese pigs.

4.
J Anim Sci Biotechnol ; 15(1): 127, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39261875

RESUMO

BACKGROUND: Addressing the shortage of high-quality protein resources, this study was conducted to investigate the effects of replacing soybean meal (SBM) with different levels of enzymolysis-fermentation compound protein feed (EFCP) in the diets of growing-finishing pigs, focusing on growth performance, nutrients digestibility, carcass traits, and meat quality. METHODS: Sixty DLY (Duroc × Landrace × Yorkshire) pigs with an initial body weight of 42.76 ± 2.05 kg were assigned to 5 dietary treatments in a 2 × 2 + 1 factorial design. These dietary treatments included a corn-soybean meal diet (CON), untreated compound protein feed (UCP) substitution 50% (U50) and 100% SBM (U100) diets, and EFCP substitution 50% (EF50) and 100% SBM (EF100) diets. Each treatment had 6 pens (replicates) with 2 pigs per pen, and the experiment lasted 58 d, divided into phase I (1-28 d) and phase II (29-58 d). Following phase I, only the CON, U50, and EF50 groups were continued for phase II, each with 5 replicate pens. On d 59, a total of 15 pigs (1 pig/pen, 5 pens/treatment) were euthanized. RESULTS: During phase I, the EF50 group had a higher average daily gain (ADG) in pigs (P < 0.05) compared to the CON group, whereas the U50 group did not have a significant difference. As the substitution ratio of UCP and EFCP increased in phase I, there was a noticeable reduction in the final body weight and ADG (P < 0.05), along with an increase in the feed-to-gain ratio (F/G) (P < 0.05). In phase II, there were no significant differences in growth performance among the treatment groups, but EF50 increased the apparent digestibility of several nutrients (including dry matter, crude protein, crude fiber, acid detergent fiber, ash, gross energy) compared to U50. The EF50 group also exhibited significantly higher serum levels of neuropeptide Y and ghrelin compared to the CON and U50 groups (P < 0.05). Moreover, the EF50 group had higher carcass weight and carcass length than those in the CON and U50 groups (P < 0.05), with no significant difference in meat quality. CONCLUSIONS: The study findings suggest that replacing 50% SBM with EFCP during the growing-finishing period can improve the growth performance, nutrient digestibility, and carcass traits of pigs without compromising meat quality. This research offers valuable insights into the modification of unconventional plant protein meals and developing alternatives to SBM.

5.
Physiol Plant ; 176(5): e14497, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39223909

RESUMO

Climate change severely affects crop production. Cotton is one of the primary fiber crops in the world and its production is susceptible to various environmental stresses, especially drought and salinity. Development of stress tolerant genotypes is the only way to escape from these environmental constraints. We identified sixteen homologs of the Arabidopsis JUB1 gene in cotton. Expression of GhJUB1_3-At was significantly induced in the temporal expression analysis of GhJUB1 genes in the roots of drought tolerant (H177) and susceptible (S9612) cotton genotypes under drought. The silencing of the GhJUB1_3-At gene alone and together with its paralogue GhJUB1_3-Dt reduced the drought tolerance in cotton plants. The transgenic lines exhibited tolerance to the drought and salt stress as compared to the wildtype (WT). The chlorophyll and relative water contents of wildtype decreased under drought as compared to the transgenic lines. The transgenic lines showed decreased H2O2 and increased proline levels under drought and salt stress, as compared to the WT, indicating that the transgenic lines have drought and salt stress tolerance. The expression analysis of the transgenic lines and WT revealed that GAI was upregulated in the transgenic lines in normal conditions as compared to the WT. Under drought and salt treatment, RAB18 and RD29A were strongly upregulated in the transgenic lines as compared to the WT. Conclusively, GhJUB1_3-At is not an auto activator and it is regulated by the crosstalk of GhHB7, GhRAP2-3 and GhRAV1. GhRAV1, a negative regulator of abiotic stress tolerance and positive regulator of leaf senescence, suppresses the expression of GhJUB1_3-At under severe circumstances leading to plant death.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Gossypium , Proteínas de Plantas , Plantas Geneticamente Modificadas , Tolerância ao Sal , Gossypium/genética , Gossypium/fisiologia , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Estresse Salino/genética , Estresse Salino/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia
6.
Dokl Biochem Biophys ; 518(1): 429-441, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39196525

RESUMO

Oral squamous cell carcinoma (OSCC) is a frequently occurring malignancy in the head and neck region. The most commonly mutated gene in OSCC is the tumor suppressor gene p53 (TP53), linked to lower survival and treatment resistance in OSCC patients. Astilbin is a flavonoid amongst several herbal treatments with a variety of pharmacological actions mainly including antioxidant, anti-inflammatory, and anti-cancer characteristics. This study evaluated the effects of astilbin on proliferation of OSCC cell lines SCC90 and SCC4 (bearing a p53 mutation) in relevance to p53 and Mdm-2 pathways. Astilbin inhibited the proliferation of SCC4 and SCC90 cells in a dose- and time-dependent manner. The IC50 values for both the cell lines were about 75 µM for astilbin. A p53 activator (RITA) was used to determine the effects of astilbin on p53 activity, and the results demonstrated synergistic reduction in cell growth. However, when combined with pifithrin-α (a p53 inhibitor), astilbin demonstrated a strong inhibition of its response. Astilbin reduced the mitochondrial membrane potential in SCC4 cells, which is a sign of apoptotic activity. Astilbin decreased the amounts of Mdm-2 (negative regulator of p53) and increased the expression of the p53 gene and protein. In a p53-dependent manner, astilbin suppressed the ability of SCC4 cells to form colonies and heal wounds. This was followed by the induction of mitochondrial intrinsic apoptosis via the activation of caspases 9 and 3, cleavage of PARP, and the suppression of pro-apoptotic Bid. Astilbin-induced p53-mediated apoptosis in OSCC cells as herbal medicinal ingredients.


Assuntos
Apoptose , Carcinoma de Células Escamosas , Flavonóis , Neoplasias Bucais , Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Apoptose/efeitos dos fármacos , Neoplasias Bucais/tratamento farmacológico , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Linhagem Celular Tumoral , Flavonóis/farmacologia , Proliferação de Células/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos
7.
J Agric Food Chem ; 72(36): 20091-20100, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39189965

RESUMO

As the main coffee polyphenols, caffeoylquinic acids (CQAs) are abundant in coffee-derived products and have the potential to act as novel feed additives for animals. However, research on the side effects of dietary CQAs supplementation is scarce, especially in young animals. Here, we explore the safety of CQAs derived from green coffee beans. Results showed that ingesting 50, 125, 250, and 500 mg/kg of dietary CQAs for 55 days is associated with greater final body weight, average daily gain, and feed efficiency in piglets compared with the control group (P < 0.05). CQAs also increased the apparent digestibility of dry matter, crude protein, and gross energy at a dose over 50 mg/kg (P < 0.05). Interestingly, CQAs supplementation with 500 mg/kg increased the white blood cell count (P < 0.05). Moreover, CQAs supplementation at a dose over 50 mg/kg decreased the serum total cholesterol concentration but increased the immunoglobulin M level in serum (P < 0.05). Importantly, CQAs supplementation had no side effects on organ histopathology and organ weight (P > 0.05). These results suggest that CQAs could serve as a secure and effective additive to improve growth performance without negatively affecting the organs of piglets.


Assuntos
Ração Animal , Coffea , Café , Polifenóis , Ácido Quínico , Animais , Ácido Quínico/análogos & derivados , Ácido Quínico/análise , Polifenóis/administração & dosagem , Polifenóis/química , Suínos/metabolismo , Ração Animal/análise , Coffea/química , Café/química , Suplementos Nutricionais/análise , Masculino , Feminino , Peso Corporal/efeitos dos fármacos
8.
Acta Biomater ; 186: 1-29, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39151665

RESUMO

Mitochondria, pivotal organelles crucial for energy generation, apoptosis regulation, and cellular metabolism, have spurred remarkable advancements in targeted material development. This review surveys recent breakthroughs in targeted mitochondrial nanomaterials, illuminating their potential in drug delivery, disease management, and biomedical imaging. This review approaches from various application perspectives, introducing the specific applications of mitochondria-targeted materials in cancer treatment, probes and imaging, and diseases treated with mitochondria as a therapeutic target. Addressing extant challenges and elucidating potential therapeutic mechanisms, it also outlines future development trajectories and obstacles. By comprehensively exploring the diverse applications of targeted mitochondrial nanomaterials, this review aims to catalyze innovative treatment modalities and diagnostic approaches in medical research. STATEMENT OF SIGNIFICANCE: This review presents the latest advancements in mitochondria-targeted nanomaterials for biomedical applications, covering diverse fields such as cancer therapy, bioprobes, imaging, and the treatment of various systemic diseases. The novelty and significance of this work lie in its systematic analysis of the intricate relationship between mitochondria and different diseases, as well as the ingenious design strategies employed to harness the therapeutic potential of nanomaterials. By providing crucial insights into the development of mitochondria-targeted nanomaterials and their applications, this review offers a valuable resource for researchers working on innovative treatment modalities and diagnostic approaches. The scientific impact and interest to the readership lie in the identification of promising avenues for future research and the potential for clinical translation of these cutting-edge technologies.


Assuntos
Mitocôndrias , Nanoestruturas , Humanos , Nanoestruturas/química , Nanoestruturas/uso terapêutico , Mitocôndrias/metabolismo , Animais , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Diagnóstico por Imagem/métodos , Sistemas de Liberação de Medicamentos/métodos
9.
Animals (Basel) ; 14(16)2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39199939

RESUMO

The study was designed to investigate the protective effect of dietary supplementation with coated benzoic acid (CBA) on intestinal barrier function in weaned pigs challenged with enterotoxigenic Escherichia coli (ETEC). Thirty-two pigs were randomized to four treatments and given either a basal diet or a basal diet supplemented with 3.0 g/kg CBA, followed by oral administration of ETEC or culture medium. The results showed that CBA supplementation increased the average daily weight gain (ADWG) in the ETEC-challenged pigs (p < 0.05). CBA also increased the serum activity of total superoxide dismutase (T-SOD) and the total antioxidant capacity (T-AOC), as it decreased the serum concentrations of endotoxin, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) in the ETEC-challenged pigs (p < 0.05). Interestingly, the CBA alleviated the ETEC-induced intestinal epithelial injury, as indicated by a reversal of the decrease in D-xylose absorption and a decrease in the serum levels of D-lactate and diamine oxidase (DAO) activity, as well as a decrease in the quantity of apoptotic cells in the jejunal epithelium following ETEC challenge (p < 0.05). Moreover, CBA supplementation significantly elevated the mucosal antioxidant capacity and increased the abundance of tight junction protein ZO-1 and the quantity of sIgA-positive cells in the jejunal epithelium (p < 0.05). Notably, CBA increased the expression levels of porcine beta defensin 2 (PBD2), PBD3, and nuclear factor erythroid-2 related factor 2 (Nrf-2), while downregulating the expression of toll-like receptor 4 (TLR4) in the jejunal mucosa (p < 0.05). Moreover, CBA decreased the expression levels of interleukin-1ß (IL-1ß), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B (NF-κB) in the ileal mucosa upon ETEC challenge (p < 0.05). These results suggest that CBA may attenuate ETEC-induced damage to the intestinal epithelium, resulting in reduced inflammation, enhanced intestinal immunity and antioxidant capacity, and improved intestinal epithelial function.

11.
J Anim Sci Biotechnol ; 15(1): 111, 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39127747

RESUMO

BACKGROUND: Appropriate iron supplementation is essential for neonatal growth and development. However, there are few reports on the effects of iron overload on neonatal growth and immune homeostasis. Thus, the aim of this study was to investigate the effects of iron nutrition on neonatal growth and intestinal immunity by administering different levels of iron to neonatal pigs. RESULTS: We found that iron deficiency and iron overload resulted in slow growth in neonatal pigs. Iron deficiency and iron overload led to down-regulation of jejunum intestinal barrier and antioxidant marker genes, and promoted CD8+ T cell differentiation in jejunum and mesenteric lymph nodes (MLN) of pigs, disrupting intestinal health. Moreover, iron levels altered serum iron and tissue iron status leading to disturbances in redox state, affecting host innate and adaptive immunity. CONCLUSIONS: These findings emphasized the effect of iron nutrition on host health and elucidated the importance of iron in regulating redox state and immunity development. This study provided valuable insights into the regulation of redox state and immune function by iron metabolism in early life, thus contributing to the development of targeted interventions and nutritional strategies to optimize iron nutrition in neonates.

12.
Int J Mol Sci ; 25(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39125768

RESUMO

Xylan, one of the most important structures and polysaccharides, plays critical roles in plant development, growth, and defense responses to pathogens. Glucuronic acid substitution of xylan (GUX) functions in xylan sidechain decoration, which is involved in a wide range of physiological processes in plants. However, the specifics of GUXs in trees remain unclear. In this study, the characterization and evolution of the GUX family genes in E. grandis, a fast-growing forest tree belonging to the Myrtaceae family, were performed. A total of 23 EgGUXs were identified from the E. grandis genome, of which all members contained motif 2, 3, 5, and 7. All GUX genes were phylogeneticly clustered into five distinct groups. Among them, EgGUX01~EgGUX05 genes were clustered into group III and IV, which were more closely related to the AtGUX1, AtGUX2, and AtGUX4 members of Arabidopsis thaliana known to possess glucuronyltransferase activity, while most other members were clustered into group I. The light-responsive elements, hormone-responsive elements, growth and development-responsive elements, and stress-responsive elements were found in the promoter cis-acting elements, suggesting the expression of GUX might also be regulated by abiotic factors. RNA-Seq data confirmed that EgGUX02, EgGUX03, and EgGUX10 are highly expressed in xylem, and EgGUX09, EgGUX10, and EgGUX14 were obviously responses to abiotic stresses. The results of this paper will provide a comprehensive determination of the functions of the EgGUX family members, which will further contribute to understanding E. grandis xylan formation.


Assuntos
Eucalyptus , Regulação da Expressão Gênica de Plantas , Família Multigênica , Filogenia , Xilanos , Eucalyptus/genética , Xilanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Regiões Promotoras Genéticas
13.
Front Vet Sci ; 11: 1417078, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38952807

RESUMO

It has been well documented that n-3 polyunsaturated fatty acids (n-3 PUFA) can alleviate inflammation caused by Escherichia coli (E. coli) lipopolysaccharides (LPS), the etiologic agents that causing yellow or white dysentery in young pigs. However, it remains unclear whether the increase in n-3 PUFA availability could enhance the ability of nursery pigs to resist invasion by E. coli. LPS. Twenty-four 21-day-old female piglets, each two of them from the same sow fed the beef tallow (BT) or fish oil (FO) diets, were allocated into four treatment groups: BT-CON, piglets from the BT-fed sows and intraperitoneally injected with saline (9 g/L); BT-LPS, piglets from the BT-fed sows and injected with LPS (100 µg/kg body weight); FO-CON, piglets from the FO-fed sows and injected with saline; FO-LPS, piglets from the FO-fed sows and injected with LPS. Following 2 h of LPS challenge, the magnitudes of increase in body temperature approached to a marked (p < 0.01) difference between the BT-CON and BT-LPS piglets, whereas the dramatic (p < 0.01) difference between the FO-CON and FO-LPS piglets was only observed at 4 h post LPS challenge. The body temperature averaged across the time points evaluated was about 0.2°C lower (p < 0.05) in the FO group than in the BT group. The FO group had lower (p < 0.05) mean corpuscular hemoglobin concentration, lower increase in serum interleukin (IL)-1ß (p < 0.10) and IL-8 (p < 0.05) levels, higher (p < 0.01) serum albumin concentration, and higher (p = 0.10) ratios of jejunum villus height to crypt depth than the BT group. The FO group had much higher (p < 0.0001) ileal content of C20:5n3, C24:0, and C22:6n3, which were 2-4 times the content of the BT group. LPS challenge resulted in decreased (p < 0.05) intestinal C20:1 and C20:5n3 content, and the decrease (p < 0.05) in intestinal C20:3n6 and C24:1 content was observed in the BT-LPS piglets rather than in the FO-LPS piglets. Taken together, this study indicated that maternal consumption of fish oil protected breast-fed piglets against E. coli LPS-induced damage through reshaping of intestinal fatty acids profile, which sheds new light on the development of nutritional strategies to enhance the ability of young pigs to resist E. coli invasion.

14.
Front Vet Sci ; 11: 1413920, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38966563

RESUMO

A 42-days study was conducted to evaluate the effects of different dietary types (corn-or wheat-soybean meal-based diet) and phytase (Phy) or a multi-carbohydrase and phytase complex (MCPC) supplementation on growth performance, digestibility of phosphorus (P), intestinal transporter gene expression, plasma indexes, bone parameters, and fecal microbiota in growing pigs. Seventy-two barrows (average initial body weight of 24.70 ± 0.09 kg) with a 2 × 3 factorial arrangement of treatments and main effects of diet type (corn-or wheat-soybean meal-based-diets) and enzyme supplementation (without, with Phy or with MCPC). Each group was designed with 6 replicate pens. The MCPC increased (p < 0.05) average daily gain (ADG) and final body weight (BW). A significant interaction (p = 0.01) was observed between diet type and enzyme supplementation on apparent total tract digestibility (ATTD) of P. The ATTD of P was higher (p < 0.05) in wheat soybean meal-based diets compared to corn-soybean meal-based diets. Compared with the corn-soybean meal-based diet, the relative expression of SLC34A2 and VDR genes in the ileum and SLC34A3 in jejunum of growing pigs fed the wheat-soybean meal based diet was lower (p < 0.05). The MCPC significantly reduced (p < 0.05) the relative expression of TRPV5 and CALB1 genes in the ileum and increased the expression of CALB1 in the duodenum compared to control diet. The phytase increased (p < 0.05) the relative expression of SLC34A1 gene in the duodenum in comparison to control diet and MCPC-supplemented diet. The Ca and P contents in plasma from pigs fed corn-soybean meal-based diet were higher (p < 0.05) than those from pigs fed wheat-soybean meal-based diet, and the parathyroid hormone (PTH) and calcitonin (CT) concentrations were lower (p < 0.05) than those fed wheat-soybean meal-based diet. The content of Ca and P in the femur and the bone strength of pigs in the corn-soybean meal group were significantly higher (p < 0.05) than those in the wheat-soybean meal groups. The phytase increased (p < 0.05) the Ca and P content and bone strength of the femur. Additionally, diet type and both enzymes significantly improved fecal microbial diversity and composition. Taken together, diet type and exogenous enzymes supplementation could differently influence the growth performance, utilization of phosphorus, intestinal transporter gene expression, bone mineralization and microbial diversity and composition in growing pigs.

15.
Adv Sci (Weinh) ; : e2404275, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38973294

RESUMO

Intervertebral disc degeneration (IVDD) is a chronic degenerative disease involving the aging and loss of proliferative capacity of nucleus pulposus cells (NPCs), processes heavily dependent on mitochondrial dynamics and autophagic flux. This study finds that the absence of BCL2/adenovirus E1B 19 kDa interacting protein 3 (BNIP3) is associated with senescence-related NPC degeneration, disrupting mitochondrial quality control. Bone marrow mesenchymal stem cells (BMSCs) have multidirectional differentiation potential and produce extracellular vesicles containing cellular activators. Therefore, in this study, BMSCs are induced under hypoxic stimulation to deliver BNIP3-rich extracellular vesicles to NPCs, thereby alleviating aging-associated mitochondrial autophagic flux, promoting damaged mitochondrial clearance, and restoring mitochondrial quality control. Mechanistically, BNIP3 is shown to interact with the membrane-bound protein annexin A2 (ANXA2), enabling the liberation of the transcription factor EB (TFEB) from the ANXA2-TFEB complex, promoting TFEB nuclear translocation, and regulating autophagy and lysosomal gene activation. Furthermore, a rat model of IVDD is established and verified the in vivo efficacy of the exosomes in repairing disc injuries, delaying NPC aging, and promoting extracellular matrix (ECM) synthesis. In summary, hypoxia-induced BMSC exosomes deliver BNIP3-rich vesicles to alleviate disc degeneration by activating the mitochondrial BNIP3/ANXA2/TFEB axis, providing a new target for IVDD treatment.

16.
Elife ; 122024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38913071

RESUMO

Metabolic disorders are highly prevalent in modern society. Exercise mimetics are defined as pharmacological compounds that can produce the beneficial effects of fitness. Recently, there has been increased interest in the role of eugenol and transient receptor potential vanilloid 1 (TRPV1) in improving metabolic health. The aim of this study was to investigate whether eugenol acts as an exercise mimetic by activating TRPV1. Here, we showed that eugenol improved endurance capacity, caused the conversion of fast-to-slow muscle fibers, and promoted white fat browning and lipolysis in mice. Mechanistically, eugenol promoted muscle fiber-type transformation by activating TRPV1-mediated CaN signaling pathway. Subsequently, we identified IL-15 as a myokine that is regulated by the CaN/nuclear factor of activated T cells cytoplasmic 1 (NFATc1) signaling pathway. Moreover, we found that TRPV1-mediated CaN/NFATc1 signaling, activated by eugenol, controlled IL-15 levels in C2C12 myotubes. Our results suggest that eugenol may act as an exercise mimetic to improve metabolic health via activating the TRPV1-mediated CaN signaling pathway.


Assuntos
Eugenol , Interleucina-15 , Fibras Musculares Esqueléticas , Fatores de Transcrição NFATC , Condicionamento Físico Animal , Canais de Cátion TRPV , Canais de Cátion TRPV/metabolismo , Canais de Cátion TRPV/genética , Animais , Interleucina-15/metabolismo , Eugenol/farmacologia , Eugenol/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fatores de Transcrição NFATC/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Miocinas
17.
Cells ; 13(11)2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38891039

RESUMO

Cadmium (Cd) exerts a toxic influence on numerous crucial growth and development processes in plants, notably affecting seed germination rate, transpiration rate, chlorophyll content, and biomass. While considerable advances in Cd uptake and detoxification of plants have been made, the mechanisms by which plants adapt to and tolerate Cd toxicity remain elusive. This review focuses on the relationship between Cd and plants and the prospects for phytoremediation of Cd pollution. We highlight the following issues: (1) the present state of Cd pollution and its associated hazards, encompassing the sources and distribution of Cd and the risks posed to human health; (2) the mechanisms underlying the uptake and transport of Cd, including the physiological processes associated with the uptake, translocation, and detoxification of Cd, as well as the pertinent gene families implicated in these processes; (3) the detrimental effects of Cd on plants and the mechanisms of detoxification, such as the activation of resistance genes, root chelation, vacuolar compartmentalization, the activation of antioxidant systems and the generation of non-enzymatic antioxidants; (4) the practical application of phytoremediation and the impact of incorporating exogenous substances on the Cd tolerance of plants.


Assuntos
Biodegradação Ambiental , Cádmio , Plantas , Cádmio/toxicidade , Cádmio/metabolismo , Plantas/metabolismo , Plantas/efeitos dos fármacos , Inativação Metabólica , Transporte Biológico , Humanos
18.
Int J Biol Macromol ; 273(Pt 1): 132914, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38844290

RESUMO

Pinus taeda L. is a fast-growing softwood with significant commercial value. Understanding structural changes in hemicellulose during growth is essential to understanding the biosynthesis processes occurring in the cell walls of this tree. In this study, alkaline extraction is applied to isolate hemicellulose from Pinus taeda L. stem segments of different ages (1, 2, 3, and 4 years old). The results show that the extracted hemicellulose is mainly comprised of O-acetylgalactoglucomannan (GGM) and 4-O-methylglucuronoarabinoxylan (GAX), with the molecular weights and ratios (i.e., GGM:GAX) of GGM and GAX increasing alongside Pinus taeda L. age. Mature Pinus taeda L. hemicellulose is mainly composed of GGM, and the ratio of (mannose:glucose) in the GGM main chain gradually increases from 2.45 to 3.60 with growth, while the galactose substitution of GGM decreases gradually from 21.36% to 14.65%. The acetylation of GGM gradually increases from 0.33 to 0.45 with the acetyl groups mainly substituting into the O-3 position in the mannan. Furthermore, the contents of arabinose and glucuronic acid in GAX gradually decrease with growth. This study can provide useful information to the research in genetic breeding and high-value utilization of Pinus taeda L.


Assuntos
Pinus taeda , Polissacarídeos , Polissacarídeos/metabolismo , Polissacarídeos/química , Pinus taeda/metabolismo , Pinus taeda/crescimento & desenvolvimento , Xilanos/metabolismo , Xilanos/química , Mananas/metabolismo , Mananas/química , Peso Molecular , Parede Celular/metabolismo , Parede Celular/química , Acetilação
19.
J Colloid Interface Sci ; 671: 751-769, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38824748

RESUMO

Chemotherapy and surgery stand as primary cancer treatments, yet the unique traits of the tumor microenvironment hinder their effectiveness. The natural compound epigallocatechin gallate (EGCG) possesses potent anti-tumor and antibacterial traits. However, the tumor's adaptability to chemotherapy due to its acidic pH and elevated glutathione (GSH) levels, coupled with the challenges posed by drug-resistant bacterial infections post-surgery, impede treatment outcomes. To address these challenges, researchers strive to explore innovative treatment strategies, such as multimodal combination therapy. This study successfully synthesized Cu-EGCG, a metal-polyphenol network, and detailly characterized it by using synchrotron radiation and high-resolution mass spectrometry (HRMS). Through chemodynamic therapy (CDT), photothermal therapy (PTT), and photodynamic therapy (PDT), Cu-EGCG showed robust antitumor and antibacterial effects. Cu+ in Cu-EGCG actively participates in a Fenton-like reaction, generating hydroxyl radicals (·OH) upon exposure to hydrogen peroxide (H2O2) and converting to Cu2+. This Cu2+ interacts with GSH, weakening the oxidative stress response of bacteria and tumor cells. Density functional theory (DFT) calculations verified Cu-EGCG's efficient GSH consumption during its reaction with GSH. Additionally, Cu-EGCG exhibited outstanding photothermal conversion when exposed to 808 nm near-infrared (NIR) radiation and produced singlet oxygen (1O2) upon laser irradiation. In both mouse tumor and wound models, Cu-EGCG showcased remarkable antitumor and antibacterial properties.


Assuntos
Antibacterianos , Antineoplásicos , Catequina , Cobre , Nanocompostos , Antibacterianos/farmacologia , Antibacterianos/química , Cobre/química , Cobre/farmacologia , Nanocompostos/química , Antineoplásicos/farmacologia , Antineoplásicos/química , Animais , Camundongos , Humanos , Catequina/química , Catequina/farmacologia , Catequina/análogos & derivados , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana/efeitos dos fármacos , Fotoquimioterapia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/patologia , Infecção dos Ferimentos/microbiologia , Ensaios de Seleção de Medicamentos Antitumorais , Staphylococcus aureus/efeitos dos fármacos , Terapia Fototérmica , Tamanho da Partícula , Escherichia coli/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos
20.
Appl Opt ; 63(12): 3299-3303, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856481

RESUMO

Integration of resonators impacts the utilization of the 3-µm-thick silicon-on-insulator (SOI) platform in photonics integrated circuits (PICs). We propose an integrated resonator leveraging a deep-etch silicon waveguide. Through the utilization of a tunable coupler based on multimode interferometers (MMIs), the resonator achieves high fabrication tolerance and reconfigurability. In a critical-coupling state, it serves as a filter with an extinction ratio (ER) of 23.5 dB and quality (Q) factor of 3.1×105, operating within the range of 1530-1570 nm. In an extreme over-coupling state, it functions as a large-bandwidth delay line, offering continuous change in delay time of 22 ps, nearly wavelength-independent. This work provides devices to the 3-µm-thick silicon photonics device library, enriching the potential applications of this technology platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA