Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 35(6): 953-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22249784

RESUMO

A new approach to the lipase-catalyzed hydrolytic resolution of (R,S)-azolyl carbamates for obtaining chiral azolyl carbamates and alcohol is described. With (R,S)-1-phenylethyl azolyl carbamates as the model substrates, the best reaction condition of using (R,S)-1-phenylethyl 4-bromopyrazole carbamate (1) as the substrate in water-saturated diisopropyl ether at 45 °C is selected. The kinetic constants, and hence enantiomeric ratio of 124, are then estimated from the kinetic analysis by considering the alcohol inhibition effect, with which theoretical time-course conversions for both enantiomers are numerically solved and agree with the experimental data. The thermodynamic parameters -ΔΔH and -ΔΔS satisfying a linear enthalpy-entropy compensation relationship of -ΔΔS = -38.84 + 3.29(-ΔΔH) are further estimated. An extension of the resolution platform to (R,S)-4-bromopyrazole carbamates derived from other (R,S)-alcohols (4, 5, 7) is also addressed.


Assuntos
Carbamatos/química , Álcoois Graxos/química , Lipase/química , Modelos Químicos , Enzimas Imobilizadas , Proteínas Fúngicas , Cinética , Especificidade por Substrato , Termodinâmica
2.
Chirality ; 24(1): 60-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22012845

RESUMO

The best reaction condition of Candida antartica lipase B as biocatalyst, 3-(2-pyridyl)pyrazole as leaving azole, and water-saturated methyl t-butyl ether as reaction medium at 45°C were first selected for performing the hydrolytic resolution of (R,S)-2-(4-chlorophenoxyl) azolides (1-4). In comparison with the kinetic resolution of (R,S)-2-phenylpropionyl 3-(2-pyridyl)pyrazolide or (R,S)-α-methoxyphenylacetyl 3-(2-pyridyl)pyrazolide at the same reaction condition, excellent enantioselectivity with more than two order-of-magnitudes higher activity for each enantiomer was obtained. The resolution was then extended to other (R,S)-3-(2-pyridyl)pyrazolides (5-7) containing 2-chloro, 3-chloro, or 2,4-dichloro substituent, giving good (E > 48) to excellent (E > 100) enantioselectivity. The thermodynamic analysis for 1, 2, and 4-7 demonstrates profound effects of the acyl or leaving moiety on varying enthalpic and entropic contributions to the difference of Gibbs free energies. A thorough kinetic analysis further indicates that on the basis of 6, the excellent enantiomeric ratio for 4 and 7 is due to the higher reactivity of (S)-4 and lower reactivity of (R)-7, respectively.


Assuntos
Lipase/química , Pirazóis/química , Catálise , Cromatografia Líquida de Alta Pressão , Hidrólise , Cinética , Espectroscopia de Ressonância Magnética , Solventes , Especificidade por Substrato , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA