Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuropsychopharmacology ; 49(6): 1024-1032, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431758

RESUMO

The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in a total of 385 scans from 22qDel (n = 96, scans = 191, 53.1% female), 22qDup (n = 37, scans = 64, 45.9% female), and TD controls (n = 80, scans = 130, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the linear effects of 22q11.2 gene dosage and non-linear effects of age were characterized with generalized additive mixed models (GAMMs). Positive gene dosage effects (volume increasing with copy number) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.


Assuntos
Variações do Número de Cópias de DNA , Síndrome de DiGeorge , Dosagem de Genes , Imageamento por Ressonância Magnética , Humanos , Feminino , Masculino , Variações do Número de Cópias de DNA/genética , Adulto , Adolescente , Criança , Adulto Jovem , Pessoa de Meia-Idade , Pré-Escolar , Síndrome de DiGeorge/genética , Síndrome de DiGeorge/patologia , Síndrome de DiGeorge/diagnóstico por imagem , Estudos Longitudinais , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/crescimento & desenvolvimento , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/crescimento & desenvolvimento , Tonsila do Cerebelo/diagnóstico por imagem , Tonsila do Cerebelo/patologia , Tálamo/diagnóstico por imagem , Tálamo/crescimento & desenvolvimento , Tálamo/patologia , Tamanho do Órgão
2.
bioRxiv ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37961662

RESUMO

The 22q11.2 locus contains genes critical for brain development. Reciprocal Copy Number Variations (CNVs) at this locus impact risk for neurodevelopmental and psychiatric disorders. Both 22q11.2 deletions (22qDel) and duplications (22qDup) are associated with autism, but 22qDel uniquely elevates schizophrenia risk. Understanding brain phenotypes associated with these highly penetrant CNVs can provide insights into genetic pathways underlying neuropsychiatric disorders. Human neuroimaging and animal models indicate subcortical brain alterations in 22qDel, yet little is known about developmental differences across specific nuclei between reciprocal 22q11.2 CNV carriers and typically developing (TD) controls. We conducted a longitudinal MRI study in 22qDel (n=96, 53.1% female), 22qDup (n=37, 45.9% female), and TD controls (n=80, 51.2% female), across a wide age range (5.5-49.5 years). Volumes of the thalamus, hippocampus, amygdala, and anatomical subregions were estimated using FreeSurfer, and the effect of 22q11.2 gene dosage was examined using linear mixed models. Age-related changes were characterized with general additive mixed models (GAMMs). Positive gene dosage effects (22qDel < TD < 22qDup) were observed for total intracranial and whole hippocampus volumes, but not whole thalamus or amygdala volumes. Several amygdala subregions exhibited similar positive effects, with bi-directional effects found across thalamic nuclei. Distinct age-related trajectories were observed across the three groups. Notably, both 22qDel and 22qDup carriers exhibited flattened development of hippocampal CA2/3 subfields relative to TD controls. This study provides novel insights into the impact of 22q11.2 CNVs on subcortical brain structures and their developmental trajectories.

3.
BMC Plant Biol ; 23(1): 211, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37085756

RESUMO

BACKGROUND: Grafting is a horticultural practice used widely across woody perennial crop species to fuse together the root and shoot system of two distinct genotypes, the rootstock and the scion, combining beneficial traits from both. In grapevine, grafting is used in nearly 80% of all commercial vines to optimize fruit quality, regulate vine vigor, and enhance biotic and abiotic stress-tolerance. Rootstocks have been shown to modulate elemental composition, metabolomic profiles, and the shape of leaves in the scion, among other traits. However, it is currently unclear how rootstock genotypes influence shoot system gene expression as previous work has reported complex and often contradictory findings. RESULTS: In the present study, we examine the influence of grafting on scion gene expression in leaves and reproductive tissues of grapevines growing under field conditions for three years. We show that the influence from the rootstock genotype is highly tissue and time dependent, manifesting only in leaves, primarily during a single year of our three-year study. Further, the degree of rootstock influence on scion gene expression is driven by interactions with the local environment. CONCLUSIONS: Our results demonstrate that the role of rootstock genotype in modulating scion gene expression is not a consistent, unchanging effect, but rather an effect that varies over time in relation to local environmental conditions.


Assuntos
Interação Gene-Ambiente , Raízes de Plantas , Raízes de Plantas/metabolismo , Folhas de Planta/genética , Genótipo , Expressão Gênica
4.
Nucleic Acids Res ; 50(W1): W774-W781, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35412637

RESUMO

WashU Epigenome Browser (https://epigenomegateway.wustl.edu/browser/) is a web-based genomic data exploration tool that provides visualization, integration, and analysis of epigenomic datasets. The newly renovated user interface and functions have enabled researchers to engage with the browser and genomic data more efficiently and effectively since 2018. Here, we introduce a new integrated panel design in the browser that allows users to interact with 1D (genomic features), 2D (such as Hi-C), 3D (genome structure), and 4D (time series) data in a single web page. The browser can display three-dimensional chromatin structures with the 3D viewer module. The 4D tracks, called 'Dynamic' tracks, animatedly display time-series data, allowing for a more striking visual impact to identify the gene or genomic region candidates as a function of time. Genomic data, such as annotation features, numerical values, and chromatin interaction data can all be viewed in the dynamic track mode. Imaging data from microscopy experiments can also be displayed in the browser. In addition to software development, we continue to service and expand the data hubs we host for large consortia including 4DN, Roadmap Epigenomics, TaRGET and ENCODE, among others. Our growing user/developer community developed additional track types as plugins, such as qBed and dynseq tracks, which extend the utility of the browser. The browser serves as a foundation for additional genomics platforms including the WashU Virus Genome Browser (for COVID-19 research) and the Comparative Genome Browser. The WashU Epigenome Browser can also be accessed freely through Amazon Web Services at https://epigenomegateway.org/.


Assuntos
Bases de Dados Genéticas , Epigenoma , Navegador , Humanos , COVID-19/genética , Genoma Humano , Internet , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA