Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38734385

RESUMO

BACKGROUND: While the daily rhythm of allergic rhinitis (AR) has long been recognized, the molecular mechanism underlying this phenomenon remains enigmatic. OBJECTIVE: We aim to investigate the role of circadian clock in AR development and to clarify the mechanism by which the daily rhythm of AR is generated. METHODS: AR was induced in mice using the ovalbumin method. Toluidine blue staining, LC-MS/MS analysis, qPCR, and immunoblotting were performed with AR and control mice. RESULTS: Ovalbumin-induced AR is diurnally rhythmic and associated with clock gene disruption in nasal mucosa. In particular, Rev-erbα is generally down-regulated, and its rhythm retained but with a near 12-h phase shift. Furthermore, global knockout of the core clock gene Bmal1 or Rev-erbα increases the susceptibility of mice to AR and blunts AR rhythmicity. Importantly, nasal SCCs (solitary chemosensory cells) are rhythmically activated, and inhibition of the SCC pathway leads to attenuated AR and a loss of its rhythm. Moreover, rhythmic activation of SCCs is accounted for by diurnal expression of ChAT (an enzyme responsible for the synthesis of acetylcholine) and temporal generation of the neurotransmitter acetylcholine. Mechanistically, REV-ERBα trans-represses Chat through direct binding to a specific response element, generating a diurnal oscillation in this target gene. CONCLUSION: These findings identify SCCs, under the control of REV-ERBα, as a driver of AR rhythmicity, and suggest targeting SCCs as a new avenue for AR management.

2.
Appl Opt ; 63(10): 2469-2476, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568525

RESUMO

Orbital angular momentum (OAM) mode division multiplexing (MDM) systems can support large-capacity and high-speed rate information transmission, in which the OAM mode conversion devices play an important role. In this paper, the mode conversion principle of magneto-optical fiber-based long-period grating (MOF-LPG) is analyzed for further developing new magneto-optical (MO) OAM mode converters, including three types of C P 01 to O A M ±1,1, O A M ±1,1 to O A M ±2,1, and O A M ±1,1 to C P 02. It is shown that the magnetic tunability of the mode converters through the propagation constants of the eigenmodes is useful for compensating for process errors and increasing the operating wavelength range. The implementation of MOF-LPGs is also discussed from the aspect of the prospective experiments.

3.
Appl Opt ; 62(33): 8849-8854, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38038031

RESUMO

Refractive index perturbation caused by erbium-doped fiber (EDF) bending is inevitable in the fabrication of erbium-doped fiber amplifiers (EDFAs). The resulting mode coupling might bring about the deviation of theoretical results from experimental data. We present a theoretical model of FM-EDFAs with mode coupling due to fiber bending and carry out a proof-of-concept experiment by a 3.2-m-long EDF stretcher. Our experiments show that the fluctuation of modal gain due to fiber bending is about 1.5 dB for L P 01 and L P 11e modes, and about 2.5 dB for L P 11o mode, and the theoretical model is more useful for the FM-EDFA design in the presence of fiber bending.

4.
Biochem Pharmacol ; 217: 115843, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797722

RESUMO

CYP2A5, an enzyme responsible for metabolism of diverse drugs, displays circadian rhythms in its expression and activity. However, the underlying mechanisms are not fully established. Here we aimed to investigate a potential role of CRY1/2 (circadian clock modulators) in circadian regulation of hepatic CYP2A5. Regulatory effects of CRY1/2 on CYP2A5 were determined using Cry1-null and Cry2-null mice, and validated using AML-12, Hepa1-6 and HepG2 cells. CYP2A5 activities both in vivo and in vitro were assessed using coumarin 7-hydroxylation as a probe reaction. mRNA and protein levels were detected by qPCR and western blotting, respectively. Regulatory mechanism was studied using a combination of luciferase reporter assays, chromatin immunoprecipitation (ChIP) and co-immunoprecipitation (Co-IP). We found that ablation of Cry1 or Cry2 in mice reduced hepatic CYP2A5 expression (at both mRNA and protein levels) and blunted its diurnal rhythms. Consistently, these knockouts showed decreased CYP2A5 activity (characterised by coumarin 7-hydroxylation) and a loss of its time-dependency, as well as exacerbated coumarin-induced hepatotoxicity. Cell-based assays confirmed that CRY1/2 positively regulated CYP2A5 expression and rhythms. Based on combined luciferase reporter, ChIP and Co-IP assays, we unraveled that CRY1/2 interacted with E4BP4 protein to repress its inhibitory effect on Cyp2a5 transcription and expression. In conclusion, CRY1/2 regulate rhythmic CYP2A5 in mouse liver through repression of E4BP4. These findings advance our understanding of circadian regulation of drug metabolism and pharmacokinetics.


Assuntos
Ritmo Circadiano , Criptocromos , Fatores de Transcrição , Animais , Camundongos , Ritmo Circadiano/genética , Fígado , Luciferases , RNA Mensageiro , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo
5.
Sensors (Basel) ; 23(12)2023 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-37420863

RESUMO

Optical signal processing (OSP) technology is a crucial part of the optical switching node in the modern optical-fiber communication system, especially when advanced modulation formats, e.g., quadrature amplitude modulation (QAM), are applied. However, the conventional on-off keying (OOK) signal is still widely used in access or metro transmission systems, which leads to the compatibility requirement of OSP for incoherent and coherent signals. In this paper, we propose a reservoir computing (RC)-OSP scheme based on nonlinear mapping behavior through a semiconductor optical amplifier (SOA) to deal with the non-return-to-zero (NRZ) signals and the differential quadrature phase-shift keying (DQPSK) signals in the nonlinear dense wavelength-division multiplexing (DWDM) channel. We optimized the key parameters of SOA-based RC to improve compensation performance. Based on the simulation investigation, we observed a significant improvement in signal quality over 10 dB compared to the distorted signals on each DWDM channel for both the NRZ and DQPSK transmission cases. The compatible OSP achieved by the proposed SOA-based RC could be a potential application of the optical switching node in the complex optical fiber communication system, where incoherent and coherent signals meet.


Assuntos
Semicondutores , Processamento de Sinais Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Fibras Ópticas
6.
J Pharm Pharmacol ; 75(7): 886-897, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37330271

RESUMO

OBJECTIVE: Delirium (acute brain syndrome) is a common and serious neuropsychiatric disorder characterized by an acute decline in cognitive function. However, there is no effective treatment clinically. Here we investigated the potential effect of jujuboside A (JuA, a natural triterpenoid saponin) on cognitive impairment in delirium. METHODS: Delirium models of mice were established by injecting lipopolysaccharide (LPS) plus midazolam and implementing a jet lag protocol. Novel object recognition test and Y maze test were used to evaluate the effects of JuA on delirium-associated cognitive impairment. The mRNA and protein levels of relevant clock factors and inflammatory factors were measured by qPCR and Western blotting. Hippocampal Iba1+ intensity was determined by immunofluorescence staining. KEY FINDINGS: JuA ameliorated delirium (particularly delirium-associated cognitive impairment) in mice, which was proved by the behavioural tests, including a preference for new objects, an increase of spontaneous alternation and improvement of locomotor activity. Furthermore, JuA inhibited the expression of ERK1/2, p-p65, TNFα and IL-1ß in hippocampus, and repressed microglial activation in delirious mice. This was attributed to the increased expression of E4BP4 (a negative regulator of ERK1/2 cascade and microglial activation). Moreover, loss of E4bp4 in mice abrogated the effects of JuA on delirium as well as on ERK1/2 cascade and microglial activation in the hippocampus of delirious mice. Additionally, JuA treatment increased the expression of E4BP4 and decreased the expression of p-p65, TNFα and IL-1ß in LPS-stimulated BV2 cells, supporting a protective effect of JuA on delirium. CONCLUSIONS: JuA protects against delirium-associated cognitive impairment through promoting hippocampal E4BP4 in mice. Our findings are of great significance to the drug development of JuA against delirium and related disorders.


Assuntos
Delírio , Saponinas , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Hipocampo , Saponinas/farmacologia , Cognição , Delírio/metabolismo , Camundongos Endogâmicos C57BL
7.
Front Plant Sci ; 14: 1158329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324720

RESUMO

Objective: It is of great importance to explore agronomic management measures for water conservation and cotton yield in arid areas. Methods: A four-year field experiment was conducted to evaluate cotton yield and soil water consumption under four row spacing configurations (high/low density with 66+10 cm wide, narrow row spacing, RS66+10H and RS66+10L; high/low density with 76 cm equal row spacing, RS76H and RS76L) and two irrigation amounts (CI:conventional drip irrigation; LI:limited drip irrigation) during the growing seasons in Shihezi, Xinjiang. Results: A quadratic relationship was observed between the maximum LAI (LAImax) and seed yield. Canopy apparent transpiration rate(CAT), daily water consumption intensity (DWCI) and crop evapotranspiration (ETC) were positively and linearly correlated with LAI. The seed yields, lint yields, and ETC under CI were 6.6-18.3%,7.1-20.8% and 22.9-32.6%higher than those observed under LI, respectively. The RS66+10H under CI had the highest seed and lint yields. RS76L had an optimum LAImax range, which ensured a higher canopy apparent photosynthesis and daily dry matter accumulation and reached the same yield level as RS66+10H; however, soil water consumption in RS76L was reduced ETC by 51-60 mm at a depth of 20-60 cm at a radius of 19-38 cm from the cotton row,and water use efficiency increased by 5.6-8.3%compared to RS66+10H under CI. Conclusion: A 5.0

8.
Opt Express ; 31(8): 12725-12738, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37157428

RESUMO

We propose a modified configuration of the nonlinear-optical loop mirror (NOLM) unit by introducing the polarization-effect optimization (PE) into a nonlinear Sagnac interferometer through a polarization-maintaining optical coupler, enabling significant extension of the regeneration region (RR) of the all-optical multi-level amplitude regenerator. We carry out the thoughtful investigations on this PE-NOLM subsystem, and reveal the collaboration mechanism between the Kerr nonlinearity and the PE effect in only one unit. Moreover, the proof-of-concept experiment and its theoretical discussion of multiple-level operation have been performed, observing the 188% enhancement on the RR extending and the consequent 4.5 dB signal-to-noise ratio (SNR) improvement for a 4-level pulse amplitude modulated (PAM4) signal compared to the conventional NOLM scheme.

9.
J Hepatol ; 79(3): 741-757, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37230230

RESUMO

BACKGROUND & AIMS: Temporal oscillations in intestinal nutrient processing and absorption are coordinated by the local clock, which leads to the hypothesis that the intestinal clock has major impacts on shaping peripheral rhythms via diurnal nutritional signals. Here, we investigate the role of the intestinal clock in controlling liver rhythmicity and metabolism. METHODS: Transcriptomic analysis, metabolomics, metabolic assays, histology, quantitative (q)PCR, and immunoblotting were performed with Bmal1-intestine-specific knockout (iKO), Rev-erba-iKO, and control mice. RESULTS: Bmal1 iKO caused large-scale reprogramming of the rhythmic transcriptome of mouse liver with a limited effect on its clock. In the absence of intestinal Bmal1, the liver clock was resistant to entrainment by inverted feeding and a high-fat diet. Importantly, Bmal1 iKO remodelled diurnal hepatic metabolism by shifting to gluconeogenesis from lipogenesis during the dark phase, leading to elevated glucose production (hyperglycaemia) and insulin insensitivity. Conversely, Rev-erba iKO caused a diversion to lipogenesis from gluconeogenesis during the light phase, resulting in enhanced lipogenesis and an increased susceptibility to alcohol-related liver injury. These temporal diversions were attributed to disruption of hepatic SREBP-1c rhythmicity, which was maintained via gut-derived polyunsaturated fatty acids produced by intestinal FADS1/2 under the control of a local clock. CONCLUSIONS: Our findings establish a pivotal role for the intestinal clock in dictating liver rhythmicity and diurnal metabolism, and suggest targeting intestinal rhythms as a new avenue for improving metabolic health. IMPACT AND IMPLICATIONS: Our findings establish the centrality of the intestinal clock among peripheral tissue clocks, and associate liver-related pathologies with its malfunction. Clock modifiers in the intestine are shown to modulate liver metabolism with improved metabolic parameters. Such knowledge will help clinicians improve the diagnosis and treatment of metabolic diseases by incorporating intestinal circadian factors.


Assuntos
Relógios Circadianos , Camundongos , Animais , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Fígado/patologia , Glucose/metabolismo , Etanol/metabolismo , Regulação da Expressão Gênica
10.
Theranostics ; 13(8): 2657-2672, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37215573

RESUMO

Rationale: The role of circadian clock in pituitary tumorigenesis remains elusive. Here we investigate whether and how circadian clock modulates the development of pituitary adenomas. Methods and Results: We found altered expression of pituitary clock genes in patients with pituitary adenomas. In particular, PER2 is prominently upregulated. Further, jetlagged mice with PER2 upregulation have accelerated growth of GH3 xenograft tumor. Conversely, loss of Per2 protects mice against developing estrogen-induced pituitary adenoma. Similar antitumor effect is observed for SR8278, a chemical that can decrease pituitary PER2 expression. RNA-seq analysis suggests involvement of cell cycle disturbance in PER2 regulation of pituitary adenoma. Subsequent in vivo and cell-based experiments validate that PER2 induces pituitary expression of Ccnb2, Cdc20 and Espl1 (three cell cycle genes) to facilitate cell cycle progression and inhibit apoptosis, thereby promoting pituitary tumorigenesis. Mechanistically, PER2 regulates the transcription of Ccnb2, Cdc20 and Espl1 through enhancing the transcriptional activity of HIF-1α. HIF-1α trans-activates Ccnb2, Cdc20 and Espl1 via direct binding to its specific response element in the gene promoters. Conclusion: PER2 integrates circadian disruption and pituitary tumorigenesis. These findings advance our understanding of crosstalk between circadian clock and pituitary adenomas and highlight the relevance of clock-based approaches in disease management.


Assuntos
Relógios Circadianos , Neoplasias Hipofisárias , Humanos , Camundongos , Animais , Neoplasias Hipofisárias/genética , Ritmo Circadiano/genética , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Relógios Circadianos/genética , Proteínas de Ciclo Celular/metabolismo , Carcinogênese/genética , Transformação Celular Neoplásica/genética
11.
Int J Pharm ; 634: 122704, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36758883

RESUMO

Poorly water-soluble drugs are frequently encountered and present a most challengeable difficulty in pharmaceutical development. Poor solubility of drugs can lead to suboptimal bioavailability and therapeutic efficiency. Increasing efforts have been contributed to improve the solubility of poorly water-soluble drugs for better pharmacokinetics and pharmacodynamics. Among various solubility enhancement technologies, protein-based strategy to address poorly water-soluble drugs issues has special interests for natural advantages including versatile interactions between proteins and hydrophobic drugs, biocompatibility, biodegradation, and metabolization of proteins. The protein-drug formulations could be formed by covalent conjugations or noncovalent interactions to facilitate solubility of poorly water-soluble drugs. This review is to summarize the advances using proteins including plant proteins, mammalian proteins, and recombinant proteins, to enhance water solubility of poorly water-soluble drugs.


Assuntos
Desenvolvimento de Medicamentos , Água , Animais , Solubilidade , Água/química , Disponibilidade Biológica , Composição de Medicamentos , Preparações Farmacêuticas , Mamíferos
12.
Sci Bull (Beijing) ; 67(4): 408-426, 2022 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36546093

RESUMO

The distinct characteristics of γδ T cells determine their vital roles in the formation of local immune responses and contribute to tissue homeostasis. However, the heterogeneity of γδ T cells across tissues remains unclear. By combining transcriptional and chromatin analyses with a truly unbiased fashion, we constructed a single-cell transcriptome and chromatin accessibility landscape of mouse γδ T cells in the lymph, spleen, and thymus. We also revealed the heterogeneity of γδ T1 and γδ T17 cells across these tissues and inferred their potential regulatory mechanisms. In the thymus, we reconstructed the developmental trajectory and gained further insights into the signature genes from the mature stage, intermediate stage, and immature stage of γδ T cells on the basis of single-cell RNA sequencing and single-cell assay for transposase-accessible chromatin sequencing data. Notably, a novel Gzma+ γδ T cell subset was identified with immature properties and only localized to the thymus. Finally, NR1D1, a circadian transcription factor (TF), was validated as a key and negative regulator of γδ T17 cell differentiation by performing a combined analysis of TF motif enrichment, regulon enrichment, and Nr1d1 knockout mice. In summary, our data represent a comprehensive mapping on the transcriptome and chromatin accessibility dynamics of mouse γδ T cells, providing a valuable resource and reference for future studies on γδ T cells.


Assuntos
Cromatina , Análise da Expressão Gênica de Célula Única , Animais , Camundongos , Diferenciação Celular/genética , Cromatina/genética , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Linfócitos Intraepiteliais/imunologia
13.
Biochem Pharmacol ; 206: 115345, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36379250

RESUMO

We aimed to investigate the potential role of NPAS2 in controlling diurnal expression and activity of hepatic CYP1A2 and to determine the underlying mechanisms. Regulatory effects of NPAS2 on CYP1A2 were determined using Npas2 knockout (Npas2-/-) mice as well as AML-12, Hepa1-6 and HepG2 cells. mRNA and protein levels were detected by reverse transcription-quantitative real-time PCR and western blotting, respectively. In vitro and in vivo CYP1A2 activities were respectively evaluated using the probe substrates phenacetin and theophylline. Transcriptional regulation was investigated using luciferase reporter assays and ChIP-Seq analysis. Loss of Npas2 in mice decreased CYP1A2 expression (at both mRNA and protein levels) and blunted its rhythmicity in the liver. Likewise, Npas2 ablation down-regulated the enzymatic activity of CYP1A2 (probed by metabolism of phenacetin and theophylline) and abrogated its time-dependency. Cell-based assays confirmed that NPAS2 positively regulated CYP1A2 expression. Mechanistic study indicated that NPAS2 trans-activated Cyp1a2 through its specific binding to the -416 bp E-box-like element within the gene promoter. In conclusion, NPAS2 was identified as a key transcriptional regulator of diurnal expression of hepatic CYP1A2 in mice. Our findings have implications for improved understanding of circadian metabolism and chronopharmacokinetics.


Assuntos
Ritmo Circadiano , Citocromo P-450 CYP1A2 , Camundongos , Animais , Citocromo P-450 CYP1A2/genética , Citocromo P-450 CYP1A2/metabolismo , Ritmo Circadiano/fisiologia , Fenacetina/metabolismo , Teofilina/farmacologia , Teofilina/metabolismo , RNA Mensageiro/metabolismo , Fígado/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo
14.
Opt Express ; 30(12): 20175-20184, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224768

RESUMO

The principle of phase-preserving regeneration is revealed by a simple theoretical model, that is, in the regenerated signals the linear phase shift component is dominant over the nonlinear counterpart for phase-preserving amplitude regeneration (PPAR). A Mach-Zehnder- interferometer (MZI)-nested nonlinear optical loop mirror (NOLM) PPAR scheme is proposed and verified by theory and experiment. Our experiment shows that for QPSK regeneration the noise reduction ratio in terms of error vector magnitude (EVM) is linearly dependent on the input signal-to-noise ratio (SNR) with the slope of 0.78 and the average phase disturbation is 4.37 degree, close to the theoretical value of 3.8 degrees. The influence of the optical couplers on the PPAR performance is in detail discussed.

15.
Biochem Pharmacol ; 205: 115286, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36216079

RESUMO

Delirium is a common and serious neuropsychiatric syndrome characterized with acute cognitive and attentional deficits, however, the effective therapies are lacking. Here, using mouse models of delirium, we investigated the effects of tangeretin (TAN, a natural flavonoid) on cognitive impairment by assessing object preference with novel object recognition (NOR) test and spontaneous alternation with Y maze test. We found that TAN, as a RORα/γ agonist, prevented cognitive decline in delirious mice as evidenced by a normal novel object preference and increased spontaneous alternation. This was accompanied by decreased expression of ERK1/2, TNFα and IL-1ß as well as diminished microglial activation in delirious mice. The protective effect of TAN on delirium was mainly attributed to increased hippocampal E4BP4 expression (a known target of RORs and a regulator of cognition in delirium through modulating the ERK1/2 cascade and microglial activation) via activation of RORα/γ. In addition, TAN treatment modulated the expression of RORα/γ target genes (such as E4bp4 and Bmal1) and inhibited the expression of TNFα and IL-1ß in lipopolysaccharide (LPS)-stimulated cells, supporting a beneficial effect of TAN on delirium. In conclusion, TAN is identified as a RORα/γ agonist which promotes E4BP4 expression to prevent cognitive decline in delirious mice. Our findings may have implications for drug development of TAN for prevention and treatment of various diseases associated with cognitive deficiency.


Assuntos
Disfunção Cognitiva , Delírio , Flavonas , Animais , Camundongos , Fatores de Transcrição ARNTL , Cognição , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/metabolismo , Flavonas/farmacologia , Lipopolissacarídeos , Fator de Necrose Tumoral alfa/genética
16.
Front Pharmacol ; 13: 991917, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36249807

RESUMO

Scutellaria baicalensis Georgi (SBG) is a traditional Chinese medicine widely used to treat disorders such as hypertension, dysentery and hemorrhaging. Here, we aimed to assess the pharmacological effects of SBG on skin aging and to investigate the underlying mechanisms. Mice with skin aging were established by treatment with D-galactose and ultraviolet-B. SBG (topical application) showed a protective effect on skin aging in mice, as evidenced by less formation of skin wrinkles, higher levels of SOD (superoxide dismutase) and HYP (hydroxyproline) as well as a lower level of MDA (malondialdehyde). In the meantime, skin MMP-1 and p53 expression were lower, epidermis was thinner and collagen amount was higher in SBG-treated mice. Anti-skin aging effects of SBG were also confirmed in NIH3T3 and HaCaT cells, as well as in mouse primary dermal fibroblasts and human primary epidermal keratinocytes. Furthermore, we found that loss of Rev-erbα (a known repressor of Bmal1) up-regulated skin BMAL1 (a clock component and a known anti-aging factor) and ameliorated skin aging in mice. Moreover, SBG dose-dependently increased the expression of BMAL1 in the skin of aged mice and in senescent NIT3H3 cells. In addition, based on a combination of Gal4 chimeric, luciferase reporter and expression assays, SBG was identified as an antagonist of REV-ERBα and thus an inducer of BMAL1 expression. In conclusion, SBG antagonizes REV-ERBα to up-regulate BMAL1 and to protect against skin aging in mice.

17.
Xenobiotica ; 52(6): 633-643, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36149338

RESUMO

CYP2E1 plays an important role in drug metabolism and drug-induced hepatotoxicity. Here, we aimed to investigate a potential role for the nuclear receptor REV-ERBα in regulation of CYP2E1 expression and acetaminophen (APAP)-induced hepatotoxicity, and to determine the underlying mechanisms.Regulatory effects of REV-ERBα on CYP2E1 expression were assessed in vivo (using Rev-erbα-/- mice) and in vitro (using AML12 and HepG2 cells). In vitro microsomal CYP2E1 activity was probed using its specific substrate p-nitrophenol. Pharmacokinetic and acute toxicity studies were performed with Rev-erbα-/- and wild-type mice after APAP administration.We found that Rev-erbα ablation led to decreases in hepatic CYP2E1 expression and activity in mice. In line with this, APAP-induced hepatotoxicity was attenuated in Rev-erbα-deficient mice. The attenuated toxicity was due to down-regulation of APAP metabolism mediated by CYP2E1, which was evidenced by a decrease in formation of the toxic intermediate metabolite NAPQI (i.e. reduced APAP-cysteine and APAP-N-acetylcysteine levels). Furthermore, positive regulation of CYP2E1 expression by REV-ERBα was confirmed in both AML12 and HepG2 cells. Based on luciferase reporter assays, it was found that REV-ERBα regulated Cyp2e1 transcription and expression through repression of DEC2.In conclusion, REV-ERBα positively regulates CYP2E1 expression in mice, thereby affecting APAP metabolism and hepatotoxicity.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/metabolismo , Acetaminofen/toxicidade , Acetilcisteína/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Fígado/metabolismo , Luciferases/metabolismo , Luciferases/farmacologia , Camundongos , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
18.
Adv Sci (Weinh) ; 9(23): e2200559, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35713240

RESUMO

Improved understanding of the etiologies of delirium, a common and severe neuropsychiatric syndrome, would facilitate the disease prevention and treatment. Here, the authors invesitgate the role of circadian rhythms in the pathogenesis of delirium. They observe perturbance of circadian rhythms in mouse models of delirium and disrupted clock gene expression in patients with delirium. In turn, physiological and genetic circadian disruptions sensitize mice to delirium with aggravated cognitive impairment. Likewise, global deletion of E4bp4 (E4 promoter-binding protein), a clock gene markedly altered in delirium conditions, results in exacerbated delirium-associated cognitive decline. Cognitive decline in delirium models is attributed to microglial activation and impaired long-term potentiation in the hippocampus. Single-cell RNA-sequencing reveals microglia as the regulatory target of E4bp4. E4bp4 restrains microglial activation via inhibiting the ERK1/2 signaling pathway. Supporting this, mice lacking in microglial E4bp4 are delirious prone, whereas mice with E4bp4 specifically deleted in hippocampal CA1 neurons have a normal phenotype. Mechanistically, E4bp4 inhibits ERK1/2 signaling by trans-repressing Mapk1/3 (genes encoding ERK1/2) via direct binding to a D-box element in the promoter region. These findings define a causal role of clock dysfunction in delirium development and indicate E4bp4 as a regulator of cognition at the crosstalk between circadian clock and delirium.


Assuntos
Relógios Circadianos , Delírio , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ritmo Circadiano/genética , Cognição , Camundongos
19.
J Pharm Pharmacol ; 74(11): 1640-1650, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-35704277

RESUMO

OBJECTIVES: Temporal lobe epilepsy (TLE) is a common and intractable form of epilepsy. There is a strong need to better understand molecular events underlying TLE and to find novel therapeutic agents. Here we aimed to investigate the role of Clock and ferroptosis in regulating TLE. METHODS: TLE model was established by treating mice with kainic acid (KA). Regulatory effects of the Clock gene on KA-induced seizures and ferroptosis were evaluated using Clock knockout (Clock-/-) mice. mRNA and protein levels were determined by quantitative real-time PCR and western blotting, respectively. Ferroptosis was assessed by measuring the levels of iron, GSH and ROS. Transcriptional regulation was studied using a combination of luciferase reporter, mobility shift and chromatin immunoprecipitation (ChIP) assays. KEY FINDINGS: We found that Clock ablation exacerbated KA-induced seizures in mice, accompanied by enhanced ferroptosis in the hippocampus. Clock ablation reduced the hippocampal expression of GPX4 and PPAR-γ, two ferroptosis-inhibitory factors, in mice and in N2a cells. Moreover, Clock regulates diurnal expression of GPX4 and PPAR-γ in mouse hippocampus and rhythmicity in KA-induced seizures. Consistent with this finding, Clock overexpression up-regulated GPX4 and PPAR-γ and protected against ferroptosis in N2a cells. In addition, luciferase reporter, mobility shift and ChIP assays showed that CLOCK trans-activated Gpx4 and Ppar-γ through direct binding to the E-box elements in the gene promoters. CONCLUSION: CLOCK protects against KA-induced seizures through increased expression of GPX4 and PPAR-γ and inhibition of ferroptosis.


Assuntos
Proteínas CLOCK , Epilepsia do Lobo Temporal , Ferroptose , Animais , Camundongos , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/genética , Epilepsia do Lobo Temporal/metabolismo , Ácido Caínico/efeitos adversos , PPAR gama , Convulsões/induzido quimicamente , Convulsões/genética , Proteínas CLOCK/genética , Camundongos Knockout
20.
Int J Biol Sci ; 18(6): 2597-2608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35414779

RESUMO

Acne vulgaris is a common skin disease, affecting over 80% of adolescents. Inflammation is known to play a central role in acne development. Here, we aimed to investigate the role of the central clock gene Bmal1 in acne-associated inflammation in mice. To this end, mice were injected intradermally with Propionibacterium acnes (P. acnes) to induce acne-associated skin inflammation. We found that Bmal1 and its target genes Rev-erbα, Dbp, Per1 and Cry2 were down-regulated in the skin of P. acnes-treated mice, suggesting a role of Bmal1 in the condition of acne. Supporting this, Bmal1-deleted or jet-lagged mice showed exacerbated P. acnes-induced inflammation in the skin. Regulation of P. acnes-induced inflammation by Bmal1 was further confirmed in RAW264.7 cells and primary mouse keratinocytes. Transcriptomic and protein expression analyses suggested that Bmal1 regulated P. acnes-induced inflammation via the NF-κB/NLRP3 axis, which is known to be repressed by REV-ERBα (a direct target of BMAL1). Moreover, loss of Rev-erbα in mice exacerbated P. acnes-induced inflammation. In addition, Rev-erbα silencing attenuated the inhibitory effects of Bmal1 on P. acnes-induced inflammation. Bmal1 knockdown failed to modulate P. acnes-induced inflammation in Rev-erbα-silenced cells. It was thus proposed that Bmal1 restrained P. acnes-induced skin inflammation via its target REV-ERBα, which acts on the NF-κB/NLRP3 axis to repress inflammation. In conclusion, Bmal1 disruption is identified as a potential pathological factor of acne-associated inflammation. The findings increase our understanding of the crosstalk between skin clock and acne and suggest targeting circadian rhythms as a promising approach for management of acne.


Assuntos
Acne Vulgar , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Inflamação/genética , Camundongos , NF-kappa B , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/genética , Membro 1 do Grupo D da Subfamília 1 de Receptores Nucleares/metabolismo , Propionibacterium acnes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA