Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Photochem Photobiol B ; 256: 112939, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38761748

RESUMO

The visible light spectrum (400-700 nm) powers plant photosynthesis and innumerable other biological processes. Photosynthesis curves plotted by pioneering photobiologists show that amber light (590-620 nm) induces the highest photosynthetic rates in this spectrum. Yet, both red and blue light are viewed superior in their influence over plant growth. Here we report two approaches for quantifying how light wavelength photosynthesis and plant growth using light emitting diodes (LEDs). Resolved quantum yield spectra of tomato and lettuce plants resemble those acquired earlier, showing high quantum utilization efficiencies in the 420-430 nm and 590-620 nm regions. Tomato plants grown under blue (445 nm), amber (595 nm), red (635 nm), and combined red-blue-amber light for 14 days show that amber light yields higher fresh and dry mass, by at least 20%. Principle component analysis shows that amber light has a more pronounced and direct effect on fresh mass, whereas red light has a major effect on dry mass. These data clarify amber light's primary role in photosynthesis and suggest that bandwidth determines plant growth and productivity under sole amber lighting. Findings set precedence for future work aimed at maximizing plant productivity, with widespread implications for controlled environment agriculture.


Assuntos
Luz , Fotossíntese , Solanum lycopersicum , Fotossíntese/efeitos da radiação , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/efeitos da radiação , Solanum lycopersicum/metabolismo , Lactuca/crescimento & desenvolvimento , Lactuca/efeitos da radiação , Lactuca/metabolismo
2.
Photochem Photobiol Sci ; 23(2): 339-354, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308169

RESUMO

Ultraviolet radiation's germicidal efficacy depends on several parameters, including wavelength, radiant exposure, microbial physiology, biological matrices, and surfaces. In this work, several ultraviolet radiation sources (a low-pressure mercury lamp, a KrCl excimer, and four UV LEDs) emitting continuous or pulsed irradiation were compared. The greatest log reductions in E. coli cells and B. subtilis endospores were 4.1 ± 0.2 (18 mJ cm-2) and 4.5 ± 0.1 (42 mJ cm-2) with continuous 222 nm, respectively. The highest MS2 log reduction observed was 2.7 ± 0.1 (277 nm at 3809 mJ cm-2). Log reductions of SARS-CoV-2 with continuous 222 nm and 277 nm were ≥ 3.4 ± 0.7, with 13.3 mJ cm-2 and 60 mJ cm-2, respectively. There was no statistical difference between continuous and pulsed irradiation (0.83-16.7% [222 nm and 277 nm] or 0.83-20% [280 nm] duty rates) on E. coli inactivation. Pulsed 260 nm radiation (0.5% duty rate) at 260 nm yielded significantly greater log reduction for both bacteria than continuous 260 nm radiation. There was no statistical difference in SARS-CoV-2 inactivation between continuous and pulsed 222 nm UV-C radiation and pulsed 277 nm radiation demonstrated greater germicidal efficacy than continuous 277 nm radiation. Greater radiant exposure for all radiation sources was required to inactivate MS2 bacteriophage. Findings demonstrate that pulsed irradiation could be more useful than continuous UV radiation in human-occupied spaces, but threshold limit values should be respected. Pathogen-specific sensitivities, experimental setup, and quantification methods for determining germicidal efficacy remain important factors when optimizing ultraviolet radiation for surface decontamination or other applications.


Assuntos
COVID-19 , Raios Ultravioleta , Humanos , SARS-CoV-2 , Escherichia coli/efeitos da radiação , Desinfecção/métodos
3.
Int Immunopharmacol ; 124(Pt A): 110851, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37651853

RESUMO

According to epidemiological studies, smoking is one of the leading causes of the high incidence of abdominal aortic aneurysms (AAA).3,4-Benzopyrene (Bap) is a by-product of coal tar and tobacco combustion produced by the incomplete combustion of organic fuels. It is an essential component of both automobile exhaust and tobacco smoke, it is also an important member of the air pollutants. However, the exact mechanism by which Bap can worsen the condition of patients with AAA and increase the mortality of patients with AAA remains unknown. This research aims to investigate the role of Bap in inducing pyroptosis in AAA. In vitro experiments, we revealed that pyroptosis-Gasdermin D (GSDMD) increased when Bap was used. Additionally, the release of inflammatory factors, such as IL-1ß and IL-18 were also rising. An mRNA sequencing analysis revealed that macrophages expressed a high level of the endothelin gene when cells were stimulated by Bap. It seemed that smooth muscle cells pyroptosis was related to macrophages. Experiments revealed that endothelin could increase the calcium ion concentration in smooth muscle cells, resulting in a large amount of ROS and activation of NLRP3 inflammasomes. We discovered that treatment with endothelin receptor antagonist (ABT-546) in vivo and calcium ion chelator (BAPTA) in vitro decreased AAA diameter, downregulated NLRP3 inflammasomes and ROS, and significantly reduced the number of activated GSDMD. Inflammatory mediators were released at a lower level. These findings suggest that Bap-induced pyroptosis may be mediated by the ET-1-Ca2+-inflammasome pathway, providing a new way to reduce mortality in AAA patients.

4.
Plants (Basel) ; 12(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37447018

RESUMO

Full-spectrum light-emitting diodes (LEDs) mainly comprising 460-nm + 595-nm light are becoming a mainstay in the horticulture industry, and recent studies indicate that plant productivity under white LEDs is higher than combined blue and red LED lighting. Different light properties (wavelength and bandwidth) in full-spectrum light, particularly for the blue and amber light regions, have only partly been explored. This research aimed to characterize the effects of amber + blue light wavelengths and bandwidths on tomato (Solanum lycopersicum cv. Beefsteak) growth, morphology, and production efficiency. Tomato seedlings were subjected to four different light treatments for 60 days: narrow amber light (595 nm), narrow blue + narrow amber light (430 nm + 595 nm) with a 1:10 ratio, white LED (455 nm + 595 nm), and a high-pressure sodium (HPS) lamp (control). The highest mean fresh mass yield occurred with the narrow blue + narrow amber light (479 g), followed by white LED at 20% less, HPS at 34% less, and narrow amber at 40% less. Dry mass and plant height were similar among light treatments. Supplementing narrow amber light with 430-nm blue light led to a 20% increase in chlorophyll content. Findings indicate that narrow amber light is more efficient in biomass accumulation than broad amber light and that precise selection of different blue and amber wavelengths can greatly impact the growth and development of tomato seedlings. This energy-efficient narrow-wavelength combination shows improvement over white LED lighting for maximizing tomato growth.

5.
Int Immunopharmacol ; 122: 110481, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37390647

RESUMO

BACKGROUND: Air pollution is an important and interventionable risk factor for cardiovascular disease. Air pollution exposure, even for a short-term exposure, is conspicuously relevant to increased risk of myocardial infarction (MI) mortality and clinical evidence has shown that air pollution particulate matter (PM) induces the aggravation of AMI. 3,4-benzo[a]pyrene (BaP), an extremely toxic polycyclic aromatic hydrocarbon (PAH) and a common component of PM, is listed as one of the main objects of environmental pollution monitoring. Both epidemiological and toxicological studies suggest that BaP exposure may be associated with cardiovascular disease. Since PM is significantly associated with the increased risk of MI mortality, and BaP is an important component of PM associated with cardiovascular disease, we intend to investigate the effect of BaP on MI models. METHODS: The MI mouse model and the oxygen and glucose deprivation (OGD) H9C2 cell model were used to investigate the effect of BaP in MI injury. The involvement of mitophagy and pyroptosis in regulating deterioration of cardiac function and aggravation of MI injury induced by BaP was comprehensively evaluated. RESULTS: Our study shows that BaP exacerbates MI injury in vivo and in vitro, a result based on BaP-induced NLRP3-related pyroptosis. In addition, BaP can inhibit PINK1/Parkin dependent mitophagy through the aryl hydrocarbon receptor (AhR), thus the mitochondrial permeability transition pore (mPTP) was induced to open. CONCLUSION: Our results suggest a role for the BaP from air pollution in MI injury aggravation and reveal that BaP aggravates MI injury by activating NLRP3-related pyroptosis via the PINK1/Parkin-mitophagy-mPTP opening axis.


Assuntos
Infarto do Miocárdio , Piroptose , Camundongos , Animais , Mitofagia , Proteína 3 que Contém Domínio de Pirina da Família NLR , Benzo(a)pireno , Proteínas Quinases , Ubiquitina-Proteína Ligases
6.
Ecotoxicol Environ Saf ; 254: 114701, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871353

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are produced during combustion of organic matter, such as during cigarette smoking, and they exist widely in the environment. Exposure to 3,4-benzo[a]pyrene (BaP), as the most widely studied PAHs, relates to many cardiovascular diseases. However, the underlying mechanism of its involvement remains largely unclear. In this study, we developed a myocardial ischemia-reperfusion (I/R) injury mouse model and an oxygen and glucose deprivation-reoxygenation H9C2 cell model to evaluate the effect of BaP in I/R injury. After BaP exposure, the expression of autophagy-related proteins, the abundance of NLRP3 inflammasomes, and the degree of pyroptosis were measured. Our results show that BaP aggravates myocardial pyroptosis in a autophagy-dependent manner. In addition, we found that BaP activates the p53-BNIP3 pathway via the aryl hydrocarbon receptor to decrease autophagosome clearance. Our findings present new insights into the mechanisms underlying cardiotoxicity and reveal that the p53-BNIP3 pathway, which is involved in autophagy regulation, is a potential therapeutic target for BaP-induced myocardial I/R injury. Because PAHs are omnipresent in daily life, the toxic effects of these harmful substances should not be underestimated.


Assuntos
Traumatismo por Reperfusão Miocárdica , Camundongos , Animais , Traumatismo por Reperfusão Miocárdica/metabolismo , Piroptose , Benzo(a)pireno/toxicidade , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Supressora de Tumor p53 , Autofagia
7.
Plants (Basel) ; 11(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36365435

RESUMO

Light is one of the most crucial parameters for enclosed cannabis (Cannabis sativa) production, as it highly influences growth, secondary metabolite production, and operational costs. The objective of this study was to investigate and evaluate the impact of six light spectra on C. sativa ('Babbas Erkle Cookies' accession) growth traits and secondary metabolite (cannabinoid and terpene) profiles. The light spectra evaluated included blue (430 nm), red (630 nm), rose (430 + 630 nm, ratio 1:10), purple (430 + 630 nm, ratio 2:1), and amber (595 nm) LED treatments, in addition to a high-pressure sodium (HPS, amber-rich light) treatment as a control. All the LED light treatments had lower fresh mean inflorescence mass than the control (HPS, 133.59 g plant-1), and monochromatic blue light yielded the least fresh inflorescence mass (76.39 g plant-1). Measurement of Δ9-tetrahydrocannabinol (THC) concentration (%) and total yield (g plant-1) showed how inflorescence mass and THC concentration need to be analyzed conjointly. Blue treatment resulted in the highest THC concentration (10.17% m/m), yet the lowest THC concentration per plant (1.44 g plant-1). The highest THC concentration per plant was achieved with HPS (2.54 g plant-1). As with THC, blue light increased cannabigerol (CBG) and terpene concentration. Conversely, blue light had a lesser impact on cannabidiol (CBD) biosynthesis in this C. sativa chemotype. As the combined effects of the light spectrum on both growth traits and secondary metabolites have important ramifications for the industry, the inappropriate spectral design could cause a reduction in cannabinoid production (20-40%). These findings show promise in helping producers choose spectral designs that meet specific C. sativa production goals.

8.
Phytomedicine ; 104: 154336, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35849969

RESUMO

BACKGROUND: The pathogenesis of myocardial ischemia/reperfusion is complex, involving multiple regulatory genes and environmental factors, and requiring the simultaneous regulation of multiple targets. Meanwhile, Traditional Chinese Medicine (TCM) has certain advantages in the comprehensive treatment of multi-site, multi-target conditions and overall regulation of this condition. This study explores the effect of the well-known TCM, the Shexiang Baoxin Pill (SBP) on myocardial ischemia/reperfusion injury in mice. MATERIALS AND METHODS: In vivo, 20 mg/kg/day SBP was administered by gavage for 28 days. In vitro, cardiomyocytes were pretreated with 25 µg/ml SBP for 24 h. Evans blue/TTC double-staining was employed to determine the infarct size. Markers of myocardial injury were detected in the serum and cell supernatants. The changes of pyroptosis and autophagy proteins were detected by western blot. Immunofluorescence, immunohistochemistry and PCR were performed to further illustrate the results. RESULTS: SBP significantly reduced the myocardial infarct size, decreased the myocardial injury markers, inhibited cardiomyocyte pyroptosis and oxidative stress, and promoted autophagy in vivo. In vitro, SBP alleviated cardiomyocyte pyroptosis, inhibited oxidative stress, reduced IL-1ß and IL-18 secretion, and unblocked autophagy flux. Myocardial injury is mitigated by SBP via the rapid degradation of autophagosomes, and SBP promotes the accumulation of autophagosomes by downregulating mmu_circ_0005874, Map3k8 and upregulating mmu-miR-543-3p. CONCLUSION: We found for the first time that SBP can inhibit pyroptosis and oxidative stress, and protect from myocardial I/R injury. In addition, it inhibits pyroptosis and improves H/R injury by promoting autophagosome generation and accelerating autophagic flux. SBP interferes with autophagy through the interaction between mmu_circ_0005874/mmu-miR-543-3p/Map3k8.


Assuntos
Medicamentos de Ervas Chinesas , MicroRNAs , Traumatismo por Reperfusão Miocárdica , Animais , Autofagia , Medicamentos de Ervas Chinesas/uso terapêutico , MAP Quinase Quinase Quinases , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos , Proteínas Proto-Oncogênicas , RNA/genética , RNA/metabolismo
9.
J Proteomics ; 265: 104635, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35659537

RESUMO

Incident light is a central modulator of plant growth and development. However, there are still open questions surrounding wavelength-specific plant proteomic responses. Here we applied tandem mass tag based quantitative proteomics technology to acquire an in-depth view of proteome changes in Arabidopsis thaliana response to narrow wavelength blue (B; 450 nm), amber (A; 595 nm), and red (R; 650 nm) light treatments. A total of 16,707 proteins were identified with 9120 proteins quantified across all three light treatments in three biological replicates. This enabled examination of changes in the abundance for proteins with low abundance and important regulatory roles including transcription factors and hormone signaling. Importantly, 18% (1631 proteins) of the A. thaliana proteome is differentially abundant in response to narrow wavelength lights, and changes in proteome correlate well with different morphologies exhibited by plants. To showcase the usefulness of this resource, data were placed in the context of more than thirty published datasets, providing orthogonal validation and further insights into light-specific biological pathways, including Systemic Acquired Resistance and Shade Avoidance Syndrome. This high-resolution resource for A. thaliana provides baseline data and a tool for defining molecular mechanisms that control fundamental aspects of plant response to changing light conditions, with implications in plant development and adaptation. SIGNIFICANCE: Understanding of molecular mechanisms involved in wavelength-specific response of plant is question of widespread interest both to basic researchers and to those interested in applying such knowledge to the engineering of novel proteins, as well as targeted lighting systems. Here we sought to generate a high-resolution proteomic profile of plant leaves, based on exposure to specific narrow-wavelength lights. Although changes in plant physiology in response to light spectral composition is well documented, there is limited knowledge on the roles of specific light wavelengths and their impact. Most previous studies have utilized relatively broad wavebands in their experiments. Such multi-wavelengths lights trigger diverse and complex signaling networks that pose major challenges in inference of wavelength-specific molecular processes that underly the plant response. Moreover, most studies have compared the effect of blue and red wavelengths comparing with FL, as control. As FL light consists the mixed spectra composition of both red and blue as well as numerous other wavelengths, comparing undeniably results in inconsistent and overlapping responses that will hamper effects to elucidate the plant response to specific wavelengths [1, 2]. Monitoring plant proteome response to specific wavelengths and further contrasting the changes with one another, rather than comparing plants proteome to FL, is thus necessary to gain detailed insights on underlying biological pathways and their consequences in plant physiology. Here, we employed narrow wavelength LED lights in our design to eliminate a potential overlap in molecular responses by ensuring non-overlapping wavelengths in the light treatments. We further applied TMT-labeling technology to gain a high-resolution view on the proteome changes. Our proteomics data provides an in-depth coverage suitable for system-wide analyses, providing deep insights on plant molecular response particularly because of the tremendous increase in the coverage of identified proteins which outreach the other biological data.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Folhas de Planta/metabolismo , Proteoma/metabolismo , Proteômica/métodos
10.
Life (Basel) ; 11(8)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34440556

RESUMO

Plants pigments, such as chlorophyll and carotenoids, absorb light within specific wavelength ranges, impacting their response to environmental light changes. Although the color-specific response of plants to natural levels of light is well described, extreme high-light stress is still being discussed as a general response, without considering the impact of wavelengths in particular response processes. In this study, we explored how the plant proteome coordinated the response and recovery to extreme light conditions (21,000 µmol m-2 s-1) under different wavelengths. Changes at the protein and mRNA levels were measured, together with the photosynthetic parameters of plants under extreme high-light conditions. The changes in abundance of four proteins involved in photoinhibition, and in the biosynthesis/assembly of PSII (PsbS, PsbH, PsbR, and Psb28) in both light treatments were measured. The blue-light treatment presented a three-fold higher non-photochemical quenching and did not change the level of the oxygen-evolving complex (OEC) or the photosystem II (PSII) complex components when compared to the control, but significantly increased psbS transcripts. The red-light treatment caused a higher abundance of PSII and OEC proteins but kept the level of psbS transcripts the same as the control. Interestingly, the blue light stimulated a more efficient energy dissipation mechanism when compared to the red light. In addition, extreme high-light stress mechanisms activated by blue light involve the role of OEC through increasing PsbS transcript levels. In the proteomics spatial analysis, we report disparate activation of multiple stress pathways under three differently damaged zones as the enriched function of light stress only found in the medium-damaged zone of the red LED treatment. The results indicate that the impact of extreme high-light stress on the proteomic level is wavelength-dependent.

11.
Plants (Basel) ; 10(6)2021 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071921

RESUMO

Red and blue light are the principal wavelengths responsible for driving photosynthetic activity, yet amber light (595 nm) has the highest quantum efficiency and amber-rich high pressure sodium lamps result in superior or comparable plant performance. On this basis, we investigated how lettuce plant growth and photosynthetic activity were influenced by broad and narrow light spectra in the 590-630 nm range, by creating amber and red light-emitting diode (LED) spectra that are not commercially available. Four different light spectra were outfitted from existing LEDs using shortpass and notch filters: a double peak spectrum (595 and 655 nm; referred to as 595 + 655-nm light) that excluded 630-nm light, 595-nm, 613-nm, and 633-nm light emitting at an irradiance level of 50 W·m-2 (243-267 µmol·m-2·s-1). Shifting LED wavelengths from 595 nm to 633 nm and from 595 nm to 613 nm resulted in a biomass yield decrease of ~50% and ~80%, respectively. When 630-nm light is blocked, lettuce displayed expanded plant structures and the absence of purple pigmentation. This report presents a new and feasible approach to plant photobiology studies, by removing certain wavelengths to assess and investigate wavelength effect on plant growth and photosynthesis. Findings indicate that amber light is superior to red light for promoting photosynthetic activity and plant productivity, and this could set precedence for future work aimed at maximizing plant productivity in controlled environment agriculture.

12.
Front Plant Sci ; 12: 620021, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135916

RESUMO

Cannabis sativa L. is cultivated for its secondary metabolites, of which the cannabinoids have documented health benefits and growing pharmaceutical potential. Recent legal cannabis production in North America and Europe has been accompanied by an increase in reported findings for optimization of naturally occurring and synthetic cannabinoid production. Of the many environmental cues that can be manipulated during plant growth in controlled environments, cannabis cultivation with different lighting spectra indicates differential production and accumulation of medically important cannabinoids, including Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), and cannabigerol (CBG), as well as terpenes and flavonoids. Ultraviolet (UV) radiation shows potential in stimulating cannabinoid biosynthesis in cannabis trichomes and pre-harvest or post-harvest UV treatment merits further exploration to determine if plant secondary metabolite accumulation could be enhanced in this manner. Visible LED light can augment THC and terpene accumulation, but not CBD. Well-designed experiments with light wavelengths other than blue and red light will provide more insight into light-dependent regulatory and molecular pathways in cannabis. Lighting strategies such as subcanopy lighting and varied light spectra at different developmental stages can lower energy consumption and optimize cannabis PSM production. Although evidence demonstrates that secondary metabolites in cannabis may be modulated by the light spectrum like other plant species, several questions remain for cannabinoid production pathways in this fast-paced and growing industry. In summarizing recent research progress on light spectra and secondary metabolites in cannabis, along with pertinent light responses in model plant species, future research directions are presented.

13.
PLoS One ; 16(3): e0247380, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33661984

RESUMO

The impacts of wavelengths in 500-600 nm on plant response and their underlying mechanisms remain elusive and required further investigation. Here, we investigated the effect of light quality on leaf area growth, biomass, pigments content, and net photosynthetic rate (Pn) across three Arabidopsis thaliana accessions, along with changes in transcription, photosynthates content, and antioxidative enzyme activity. Eleven-leaves plants were treated with BL; 450 nm, AL; 595 nm, RL; 650 nm, and FL; 400-700 nm as control. RL significantly increased leaf area growth, biomass, and promoted Pn. BL increased leaf area growth, carotenoid and anthocyanin content. AL significantly reduced leaf area growth and biomass, while Pn remained unaffected. Petiole elongation was further observed across accessions under AL. To explore the underlying mechanisms under AL, expression of key marker genes involved in light-responsive photosynthetic reaction, enzymatic activity of antioxidants, and content of photosynthates were monitored in Col-0 under AL, RL (as contrast), and FL (as control). AL induced transcription of GSH2 and PSBA, while downregulated NPQ1 and FNR2. Photosynthates, including proteins and starches, showed lower content under AL. SOD and APX showed enhanced enzymatic activity under AL. These results provide insight into physiological and photosynthetic responses to light quality, in addition to identifying putative protective-mechanisms that may be induced to cope with lighting-stress in order to enhance plant stress tolerance.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Luz , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estresse Fisiológico/fisiologia
14.
Front Plant Sci ; 12: 611893, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33633764

RESUMO

Rapid technology development in controlled environment (CE) plant production has been applied to a large variety of plants. In recent years, strawberries have become a popular fruit for CE production because of their high economic and nutritional values. With the widespread use of light-emitting diode (LED) technology in the produce industry, growers can manipulate strawberry growth and development by providing specific light spectra. Manipulating light intensity and spectral composition can modify strawberry secondary metabolism and highly impact fruit quality and antioxidant properties. While the impact of visible light on secondary metabolite profiles for other greenhouse crops is well documented, more insight into the impact of different light spectra, from UV radiation to the visible light spectrum, on strawberry plants is required. This will allow growers to maximize yield and rapidly adapt to consumer preferences. In this review, a compilation of studies investigating the effect of light properties on strawberry fruit flavonoids is provided, and a comparative analysis of how light spectra influences strawberry's photobiology and secondary metabolism is presented. The effects of pre-harvest and post-harvest light treatments with UV radiation and visible light are considered. Future studies and implications for LED lighting configurations in strawberry fruit production for researchers and growers are discussed.

15.
Bioprocess Biosyst Eng ; 43(8): 1445-1455, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32270294

RESUMO

The effect of light wavelengths on the physiological, biochemical and lutein content of the microalgal consortia Chlorella variabilis and Scenedesmus obliquus was evaluated using different light sources. Among different light treatments, cool-white fluorescent light produced the highest biomass of 673 mg L-1 with a specific growth rate of 0.75 day-1 followed by blue (500 mg L-1; 0.73 day-1). The chlorophyll content was enhanced under blue light (10.7 mg L-1) followed by cool fluorescent light (9.3 mg L-1), whereas the lutein productivity was enhanced under cool fluorescent light (7.22 mg g-1). Protein content of the microalgal consortia was enhanced under all light treatments with the highest protein accumulation under cool-white fluorescent light (~56% of dry mass) closely followed by amber light (52% of dry mass), whereas the carbohydrate content was higher under amber light (~35% of dry mass). The results revealed that the consortia could grow well on diluted dairy wastewater thereby reducing the cost of algal production when compared with the use of inorganic media and a two-phase culture process utilizing cool fluorescent and amber light could be employed for maximizing algal biomass and nutrient composition with enhanced lutein production. The study also emphasizes on the economic efficiency of LED lights in terms of biomass produced based on the modest electricity consumed and the importance of using amber light for cultivating microalgae for its nutrient content which has seldom been studied.


Assuntos
Chlorella/crescimento & desenvolvimento , Iluminação , Microalgas/crescimento & desenvolvimento , Consórcios Microbianos , Scenedesmus/crescimento & desenvolvimento , Águas Residuárias/microbiologia , Biocombustíveis , Biomassa , Indústria de Laticínios
16.
Plant Sci ; 289: 110272, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31623794

RESUMO

The basis of a plant's spectral response of photosynthesis, or the photosynthetically active radiation (PAR) curve, is derived from earlier studies nearly five decades ago. These studies reported that blue and red light were the primary wavelengths; however, shifting within red and blue peaks (10-40 nm) in addition to different PAR curve shapes was observed. In recent years, the McCree curve, which is considered the standard for spectral response of photosynthesis, has been challenged because of experimental design and differences between photosynthetic and whole-plant growth responses. Therefore, this overview provides an amalgamation of all the PAR curve studies, with a focus on narrow spectrum light characteristics, including light measurement units, full width at half maximums (FWHMs) of narrow light spectra, and light intensity levels. While replicating these pioneering works with higher wavelength resolution and narrower light spectrum across the whole visible spectrum is still challenging, we hope that this re-interpretation of PAR curves in plants can elucidate and provide in-depth insight into spectral responses of photosynthesis. We leave the readers with some different perspectives and prospects that need to be considered for future studies.


Assuntos
Luz , Fotossíntese , Plantas/metabolismo
17.
Front Plant Sci ; 10: 296, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31001288

RESUMO

This review presents recent developments in plant photobiology and lighting systems for horticultural crops, as well as potential applications for cannabis (Cannabis sativa and C. indica) plant production. The legal and commercial production of the cannabis plant is a relatively new, rapidly growing, and highly profitable industry in Europe and North America. However, more knowledge transfer from plant studies and horticultural communities to commercial cannabis plant growers is needed. Plant photosynthesis and photomorphogenesis are influenced by light wavelength, intensity, and photoperiod via plant photoreceptors that sense light and control plant growth. Further, light properties play a critical role in plant vegetative growth and reproductive (flowering) developmental stages, as well as in biomass, secondary metabolite synthesis, and accumulation. Advantages and disadvantages of widespread greenhouse lighting systems that use high pressure sodium lamps or light emitting diode (LED) lighting are known. Some artificial plant lighting practices will require improvements for cannabis production. By manipulating LED light spectra and stimulating specific plant photoreceptors, it may be possible to minimize operation costs while maximizing cannabis biomass and cannabinoid yield, including tetrahydrocannabinol (or Δ9-tetrahydrocannabinol) and cannabidiol for medicinal and recreational purposes. The basics of plant photobiology (photosynthesis and photomorphogenesis) and electrical lighting systems are discussed, with an emphasis on how the light spectrum and lighting strategies could influence cannabis production and secondary compound accumulation.

18.
Proteome Sci ; 16: 20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534005

RESUMO

BACKGROUND: Abiotic stress reduces photosynthetic yield and plant growth, negatively impacting global crop production and is a major constraint faced by agriculture. However, the knowledge on the impact on plants under extremely high irradiance is limited. We present the first in-depth proteomics analysis of plants treated with a method developed by our research group to generate a light gradient using an extremely intense light. METHODS: The method consists of utilizing light emitting diodes (LED) to create a single spot at 24,000 µmol m- 2 s- 1 irradiance, generating three light stress levels. A light map and temperature profile were obtained during the light experiment. The proteins expressed in the treated tomato (Solanum lycopersicum, Heinz H1706) leaves were harvested 10 days after the treatment, allowing for the detection of proteins involved in a long-term recovery. A multiplex labeled proteomics method (iTRAQ) was analyzed by LC-MS/MS. RESULTS: A total of 3994 proteins were identified at 1% false discovery rate and matched additional quality filters. Hierarchical clustering analysis resulted in four types of patterns related to the protein expression, with one being directly linked to the increased LED irradiation. A total of 37 proteins were found unique to the least damaged leaf zone, while the medium damaged zone had 372 proteins, and the severely damaged presented unique 1003 proteins. Oxygen evolving complex and PSII complex proteins (PsbH, PsbS, PsbR and Psb28) were found to be abundant in the most damaged leaf zone. This leaf zone presented a protein involved in the salicylic acid response, while it was not abundant in the other leaf zones. The mRNA level of PsbR was significantly lower (1-fold) compared the control in the most damaged zone of the leaf, while Psb28 and PsbH were lower (1-fold) in the less damaged leaf zones. PsbS mRNA abundance in all leaf zones tested presented no statistically significant change from the control. CONCLUSIONS: We present the first characterization of the proteome changes caused by an extreme level of high-light intensity (24,000 µmol m- 2 s- 1). The proteomics results show the presence of specific defense responses to each level of light intensity, with a possible involvement of proteins PsbH, Psb28, PsbR, and PsbS.

19.
J Occup Environ Hyg ; 15(2): 133-142, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29157183

RESUMO

Light emitting diodes have slowly gained market share as horticultural lighting systems in greenhouses due to their rapid improvement in color performances and light outputs. These advancements have increased the availability of the full spectrum of visible wavelengths and the corresponding irradiance outputs available to plants. However, light emitting diodes owners have limited information on the proper options for personal eyewear protection as the irradiance levels have increased. The objective of this study was to measure the light transmittance performance of 12 eyewear protection including welding goggles, safety goggles, polarized glasses, and sunglasses across the human visible spectrum (380-740 nm) up to an irradiance level of 1500 W·m-2 from high-irradiant light emitting diodes assemblies. Based on the spectral measurements, certain transmitted spectra exhibited spectrum shifts or an alteration in the bimodal distribution which were different than the light emitting diodes spectra, due to the uneven transmittance efficiencies of the glasses. As for the measured transmittance percentages in two experiments, each type of eyewear protection showed distinct transmittance performances, and the performance of the tested eyewear protection was not impacted by irradiance but was dependent on the wavelength. The mean light transmittance was 1.77% for the welding glasses, 13.12% for the polarized glasses, 15.27% for the safety goggles, and 27.65% for the sunglasses. According to these measured results and the spectral weighting exposure limits from the International Electrotechnical Commission 62471 and EU directive 2006/25, consumers and workers using horticultural lighting can select welding goggles or polarized glasses, to limit the possible ocular impact of the high irradiance of monochromatic light in electrical lighting environment. Sunglasses and safety goggles would not be advised as protection, especially if infrared radiation was used.


Assuntos
Dispositivos de Proteção dos Olhos/normas , Iluminação/instrumentação , Agricultura , Humanos , Raios Infravermelhos , Iluminação/normas , Exposição Ocupacional/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA