Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Food Chem Toxicol ; 190: 114787, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38838754

RESUMO

Lignin-derivable bisguaiacols/bissyringols are viable alternatives to commercial bisphenols; however, many bisguaiacols/bissyringols (e.g., bisguaiacol F [BGF]) have unsubstituted bridging carbons between the aromatic rings, making them more structurally similar to bisphenol F (BPF) than bisphenol A (BPA) - both of which are suspected endocrine disruptors. Herein, we investigated the estrogenic activity (EA) and developmental toxicity of dimethyl-substituted bridging carbon-based lignin-derivable bisphenols (bisguaiacol A [BGA] and bissyringol A [BSA]). Notably, BSA showed undetectable EA at seven test concentrations (from 10-12 M to 10-6 M) in the MCF-7 cell proliferation assay, whereas BPA had detectable EA at five concentrations (from 10-10 M to 10-6 M). In silico results indicated that BSA had the lowest binding affinity with estrogen receptors. Moreover, in vivo chicken embryonic assay results revealed that lignin-derivable monomers had minimal developmental toxicity vs. BPA at environmentally relevant test concentrations (8.7-116 µg/kg). Additionally, all lignin-derivable compounds showed significantly lower expression fold changes (from ∼1.81 to ∼4.41) in chicken fetal liver tests for an estrogen-response gene (apolipoprotein II) in comparison to BPA (fold change of ∼11.51), which was indicative of significantly reduced estrogenic response. Altogether, the methoxy substituents on lignin-derivable bisphenols appeared to be a positive factor in reducing the EA of BPA alternatives.


Assuntos
Compostos Benzidrílicos , Estrogênios , Lignina , Fenóis , Animais , Fenóis/toxicidade , Fenóis/química , Humanos , Compostos Benzidrílicos/toxicidade , Compostos Benzidrílicos/química , Lignina/química , Embrião de Galinha , Estrogênios/toxicidade , Estrogênios/química , Células MCF-7 , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/química , Proliferação de Células/efeitos dos fármacos , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/efeitos dos fármacos , Galinhas
2.
Avian Pathol ; : 1-16, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38776185

RESUMO

Probiotics can enhance broiler chicken health by improving intestinal microbiota, potentially replacing antibiotics. They protect against bacterial diseases like necrotic enteritis (NE) in poultry. Understanding their role is crucial for managing bacterial diseases, including NE. This study conducted a meta-analysis to assess the effects of Bacillus subtilis probiotic supplementation on feed conversion ratio (FCR), NE lesion score, and mortality. Additionally, a systematic review analysed gut microbiota changes in broilers challenged with Clostridium perfringens with or without the probiotic supplementation. Effect sizes from the studies were estimated in terms of standardized mean difference (SMD). Random effect models were fitted to estimate the pooled effect size and 95% confidence interval (CI) of the pooled effect size between the control [probiotic-free + C. perfringens] and the treatment [Bacillus subtilis supplemented + C. perfringens] groups. Overall variance was computed by heterogeneity (Q). The meta-analysis showed that Bacillus subtilis probiotic supplementation significantly improved FCR and reduced NE lesion score but had no effect on mortality rates. The estimated overall effects of probiotic supplementation on FCR, NE lesion score and mortality percentage in terms of SMD were -0.91 (CI = -1.34, -0.49; P < 0.001*); -0.67 (CI = -1.11, -0.22; P = 0.006*), and -0.32 (CI = -0.70, 0.06; P = 0.08), respectively. Heterogeneity analysis indicated significant variations across studies for FCR (Q = 69.66; P < 0.001*) and NE lesion score (Q = 42.35; P < 0.001*) while heterogeneity was not significant for mortality (Q = 2.72; P = 0.74). Bacillus subtilis probiotic supplementation enriched specific gut microbiota including Streptococcus, Butyricicoccus, Faecalibacterium, and Ruminococcus. These microbiotas were found to upregulate expression of various genes such as TJ proteins occluding, ZO-1, junctional adhesion 2 (JAM2), interferon gamma, IL12-ß and transforming growth factor-ß4. Moreover, downregulated mucin-2 expression was involved in restoring the intestinal physical barrier, reducing intestinal inflammation, and recovering the physiological functions of damaged intestines. These findings highlight the potential benefits of probiotic supplementation in poultry management, particularly in combating bacterial diseases and promoting intestinal health.

3.
ACS Nano ; 18(12): 8600-8625, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38469753

RESUMO

Accurately controlling magnetic and spin states presents a significant challenge in spintronics, especially as demands for higher data storage density and increased processing speeds grow. Approaches such as light control are gradually supplanting traditional magnetic field methods. Traditionally, the modulation of magnetism was predominantly achieved through polarized light with the help of ultrafast light technologies. With the growing demand for energy efficiency and multifunctionality in spintronic devices, integrating photovoltaic materials into magnetoelectric systems has introduced more physical effects. This development suggests that sunlight will play an increasingly pivotal role in manipulating spin orientation in the future. This review introduces and concludes the influence of various light types on magnetism, exploring mechanisms such as magneto-optical (MO) effects, light-induced magnetic phase transitions, and spin photovoltaic effects. This review briefly summarizes recent advancements in the light control of magnetism, especially sunlight, and their potential applications, providing an optimistic perspective on future research directions in this area.

4.
Zhongguo Gu Shang ; 36(7): 614-8, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37475623

RESUMO

OBJECTIVE: To investigate the risk factors of elbow stiffness after open reduction and internal fixation of intercondylar fracture of humerus. METHODS: From March 2015 to February 2019, 120 patients with humeral intercondylar fractures were treated with open fixation including 59 males and 61 females, aged from 25 to 77 years with an average of(53.5±3.2) years. According to the occurrence of elbow stiffness after operation, 120 patients were divided into stiffness group(37 cases) and control group(83 cases). The related factors of elbow stiffness were analyzed by single factor analysis, and the risk of elbow stiffness after internal fixation of humeral intercondylar fracture was analyzed by logistic regression factor. RESULTS: There were 37 cases of elbow stiffness(stiff group), and 83 cases had no elbow stiffness(control group). The incidence of joint stiffness was 30.83%. There were significant differences between the stiffness group and the control group in age, injury energy, fracture to operation time, AO classification of fracture, open injury and postoperative premature or hyperactivity. Multivariate logistic regression analysis showed that age>50 years old, high energy injury, AO classification of fracture, open fracture and postoperative premature or hyperactivity were risk factors for elbow stiffness after internal fixation of humeral intercondylar fracture. The postoperative mobility and Mayo elbow performance score(MEPS) scores of the postoperative stiffness group were lower than those of the non-stiffness group with statistical significance(P<0.05). There were no significant differences in postoperative mobility and MEPS scores between flexion stiffness and rotation stiffness after humeral intercondylar fracture(P>0.05). CONCLUSION: In view of the risk factors of elbow stiffness after internal fixation of humeral intercondylar fracture, reasonable operation plan and rehabilitation strategy should be formulated before operation to minimize the incidence of elbow stiffness.


Assuntos
Articulação do Cotovelo , Fraturas Expostas , Fraturas do Úmero , Artropatias , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Cotovelo , Resultado do Tratamento , Úmero , Fraturas do Úmero/cirurgia , Fixação Interna de Fraturas , Articulação do Cotovelo/cirurgia , Fatores de Risco , Amplitude de Movimento Articular , Estudos Retrospectivos
5.
Bioresour Technol ; 385: 129454, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37406829

RESUMO

In this study, efficient and sustainable conversion of waste bread (WB) to 5-hydroxymethyl-2-furoamine (HMFA) was achieved in a cascade reaction in betaine:malonic acid (B:MA) - water. 5-HMF (30.3 wt% yield) was synthesized from WB (40.0 g/L) in B:MA - water (B:MA, 18 wt%) in 45 min at 190 °C. By using the newly created recombinant E. coli HNILGD-AlaDH cells expressing L-alanine dehydrogenase (AlaDH) and ω-transaminase mutant HNILGD as biocatalyst, the WB-valorized 5-HMF was biologically aminated into HMFA in a high yield (92.1%) at 35 °C for 12 h through in situ removal of the amino transfer by-products of the amine donor, greatly reducing amine donor dosage (from D-Ala/5-HMF = 16/1 to D-Ala/5-HMF = 2/1, mol/mol) and improving the productivity of HMFA (0.282 g HMFA per g WB). This two-step chemical-enzymatic cascade reaction strategy with B:MA and HNILGD-AlaDH whole-cell provides a new idea for the chemoenzymatic synthesis of valuable furan chemicals from waste biomass.


Assuntos
Escherichia coli , Furaldeído , Pão , Furanos , Catálise , Água
6.
Bioresour Technol ; 385: 129279, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37321308

RESUMO

Sunflower straw, a usually neglected and abundant agricultural waste, has great potential for contributing to environmental protection realizing its high-value of valorization if utilizing properly. Because hemicellulose contains amorphous polysaccharide chains, relatively mild organic acid pretreatment can effectively reduce its resistance. Through hydrothermal pretreatment, sunflower straw was pretreated in tartaric acid (1 wt%) at 180 °C for 60 min to enhance its reducing sugar recovery. After tartaric acid-assisted hydrothermal pretreatment, 39.9% of lignin and 90.2% of xylan were eliminated. The reducing sugar recovery increased threefold, while the solution could be effectively reused for four cycles. The properties of more porous surface, improved accessibility, and decreased surface lignin area of sunflower straw were observed through various characterizations, which explained the improved saccharide recovery and provided a basis for the mechanism of tartaric acid-assisted hydrothermal pretreatment. Overall, this tartaric acid hydrothermal pretreatment strategy greatly provided new impetus for the biomass refinery.


Assuntos
Helianthus , Lignina , Celulose , Hidrólise , Açúcares
7.
Food Chem ; 424: 136444, 2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37257281

RESUMO

Resveratrol loaded nanoparticles (nano-resveratrol) containing a zein core surrounded by surfactant (Tween-NPs) or carboxymethyl chitosan (CMCS-NPs) shell were fabricated with different particle sizes, surface charges and colloidal stabilities. Changes of physicochemical properties for the two nano-resveratrols, as well as their antioxidant potentials and cytotoxicity were investigated during a static in vitro gastrointestinal tract (GIT) digestion. Results showed that the Tween-NPs had a much higher bioaccessibility (84.1 ± 19.2%) than that of CMCS-NPs (36.6 ± 4.2%) after the GIT digestion, which was expected due to the steric barrier of the CMCS coating. Both nano-resveratrols could sustained their antioxidant activities after digestion. However, the Tween-NPs had a significantly higher cytotoxicity against MCF-7 cells than CMCS-NPs and free resveratrol, while a reduction in cytotoxicity of Tween-NPs was observed after the digestion. The bioactivities results were well correlated with the physicochemical properties and dissolution of resveratrol under environmental stress.


Assuntos
Quitosana , Nanopartículas , Resveratrol/farmacologia , Antioxidantes/farmacologia , Polissorbatos , Nanopartículas/química , Biopolímeros , Digestão , Tamanho da Partícula , Quitosana/farmacologia , Quitosana/química
8.
Bioresour Technol ; 376: 128806, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36858123

RESUMO

Deep eutectic solvent (DES) has caught widely attention of researchers in biomass pretreatment. As a highly efficient surfactant, cetyltrimethylammonium bromide (CTAB) was expected to be used for synthesizing new DESs with additional functions in pretreatment. In this work, an efficient pretreatment method using a mixture of CTAB and lactic acid (LA) as a novel functional DES was established to improve enzymatic digestion efficiency of rice husk (RH). The results showed that DES CTAB:LA effectively removed lignin (51.5%) and xylan (79.9%) and the enzymatic hydrolysis activity of CTAB:LA-treated RH was 5 times that of RH. Then, a series of characterization demonstrated that a substantial accessibility increased, a hydrophobicity and lignin surface area decreased, and great surface morphology alternation were observed on the treated RH, which explained the increase in enzymatic hydrolysis efficiency. Overall, the discovery of more functional DESs might be motivated and biorefinery pretreatment processes might be greatly promoted.


Assuntos
Lignina , Oryza , Cetrimônio , Solventes Eutéticos Profundos , Hidrólise , Solventes , Ácido Láctico , Biomassa
9.
Artigo em Inglês | MEDLINE | ID: mdl-36669816

RESUMO

Bisguaiacols, lignin-derivable bisphenols, are considered promising and possibly safer alternatives to bisphenol A (BPA), but comprehensive toxicity investigations are needed to ensure safety. Most toxicity studies of BPA and its analogues have focused on potential estrogenic activity, and only limited toxicological data are available on other toxicity aspects, such as genotoxicity at low exposure levels. In this study, the genotoxicity of six lignin-derivable bisguaiacols with varying regioisomer contents and degrees of methoxy substitution was investigated using a multi-tiered method, consisting of in silico simulations, in vitro Ames tests, and in vivo comet tests. The toxicity estimation software tool, an application that predicts toxicity of chemicals using quantitative structure-activity relationships, calculated that the majority of the lignin-derivable bisguaiacols were non-mutagenic. These results were supported by Ames tests using five tester strains (TA98, TA100, TA102, TA1535, and TA1537) at concentrations ranging from 0.5 pmol/plate to 5 nmol/plate. The potential genotoxicity of bisguaiacols was further evaluated using in vivo comet testing in fetal chicken livers, and in addition to the standard alkaline comet assay, the formamidopyrimidine DNA glycosylase enzyme-modified comet assay was employed to investigate oxidative DNA damage in the liver samples. The oxidative stress analyses indicated that the majority of lignin-derivable analogues showed no signs of mutagenicity (mutagenic index < 1.5) or genotoxicity, in comparison to BPA and bisphenol F, likely due to the methoxy groups on the lignin-derivable aromatics. These findings reinforce the potential of lignin-derivable bisphenols as safer alternatives to BPA.


Assuntos
Dano ao DNA , Lignina , Testes de Mutagenicidade/métodos , Lignina/toxicidade , Ensaio Cometa/métodos , Mutagênicos/toxicidade
10.
Bioresour Technol ; 371: 128579, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36610484

RESUMO

Via combination catalysis with deep eutectic solvent lactic acid:betaine (chemocatalyst) and HMFOMUT cell (biocatalyst: E. coli HMFOMUT whole-cell), one-pot manufacture of 2,5-furandimethanol from waste bioresource was constructed in a chemoenzymatic approach. With bread waste (50 g/L) as substrate, the 5-hydroxymethylfuran yield reached 44.2 Cmol% (based on bread waste) by lactic acid:betaine (15 wt%) at 180 °C for 15 min. With glucose as co-substrate, HMFOMUT could transform 5-hydroxymethylfurfural (150 mM) to 2,5-furandimethanol (84.5 % yield) after 1 day at 37 °C and pH 7.0. In lactic acid:betaine-H2O, HMFOMUT effectively converted bread-derived 5-hydroxymethylfurfural into 2,5-furandimethanol in a productivity of 700 kg 2,5-furandimethanol per kg 5-hydroxymethylfurfural (230 kg 2,5-furandimethanol per kg bread). In an eco-friendly lactic acid:betaine system, an effective one-pot chemoenzymatic strategy was firstly developed to convert bread waste into 2,5-furandimethanol, which would reduce the operation cost and has potential application value for valorizing waste food bioresource into value-added furan.


Assuntos
Pão , Escherichia coli , Betaína , Ácido Láctico
11.
Theranostics ; 12(18): 7681-7698, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36451864

RESUMO

Rationale: Increased lipid droplet (LD) formation has been linked to tumor metastasis, stemness, and chemoresistance in various types of cancer. Here, we revealed that LD formation is critical for the adaptation to sorafenib in hepatocellular carcinoma (HCC) cells. We aim to investigate the LD function and its regulatory mechanisms in HCC. Methods: The key proteins responsible for LD formation were screened by both metabolomics and proteomics in sorafenib-resistant HCC cells and further validated by immunoblotting and immunofluorescence staining. Biological function of AKR1C3 was evaluated by CRISPR/Cas9-based gene editing. Isotopic tracing analysis with deuterium3-labeled palmitate or carbon13-labeled glucose was conducted to investigate fatty acid (FA) and glucose carbon flux. Seahorse analysis was performed to assess the glycolytic flux and mitochondrial function. Selective AKR1C3 inhibitors were used to evaluate the effect of AKR1C3 inhibition on HCC tumor growth and induction of autophagy. Results: We found that long-term sorafenib treatment impairs fatty acid oxidation (FAO), leading to LD accumulation in HCC cells. Using multi-omics analysis in cultured HCC cells, we identified that aldo-keto reductase AKR1C3 is responsible for LD accumulation in HCC. Genetic loss of AKR1C3 fully depletes LD contents, navigating FA flux to phospholipids, sphingolipids, and mitochondria. Furthermore, we found that AKR1C3-dependent LD accumulation is required for mitigating sorafenib-induced mitochondrial lipotoxicity and dysfunction. Pharmacologic inhibition of AKR1C3 activity instantly induces autophagy-dependent LD catabolism, resulting in mitochondrial fission and apoptosis in sorafenib-resistant HCC clones. Notably, manipulation of AKR1C3 expression is sufficient to drive the metabolic switch between FAO and glycolysis. Conclusions: Our findings revealed that AKR1C3-dependent LD formation is critical for the adaptation to sorafenib in HCC through regulating lipid and energy homeostasis. AKR1C3-dependent LD accumulation protects HCC cells from sorafenib-induced mitochondrial lipotoxicity by regulating lipophagy. Targeting AKR1C3 might be a promising therapeutic strategy for HCC tumors.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Sorafenibe/farmacologia , Gotículas Lipídicas , Neoplasias Hepáticas/tratamento farmacológico , Ácidos Graxos , Glucose , Membro C3 da Família 1 de alfa-Ceto Redutase
12.
Adv Sci (Weinh) ; : e2202642, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36382559

RESUMO

Lacking a clear understanding of the molecular mechanism determining cancer cell sensitivity to oxidative phosphorylation (OXPHOS) inhibition limits the development of OXPHOS-targeting cancer treatment. Here, cancer cell lines sensitive or resistant to OXPHOS inhibition are identified by screening. OXPHOS inhibition-sensitive cancer cells possess increased OXPHOS activity and silenced nicotinamide N-methyltransferase (NNMT) expression. NNMT expression negatively correlates with OXPHOS inhibition sensitivity and functionally downregulates the intracellular levels of S-adenosyl methionine (SAM). Expression of DNA methyltransferase 1 (DNMT1), a SAM consumer, positively correlates with OXPHOS inhibition sensitivity. NNMT overexpression and DNMT1 inhibition render OXPHOS inhibition-sensitive cancer cells resistant. Importantly, treatments of OXPHOS inhibitors (Gboxin and Berberine) hamper the growth of mouse tumor xenografts by OXPHOS inhibition sensitive but not resistant cancer cells. What's more, the retrospective study of 62 tumor samples from a clinical trial demonstrates that administration of Berberine reduces the tumor recurrence rate of NNMTlow /DNMT1high but not NNMThigh /DNMT1low colorectal adenomas (CRAs). These results thus reveal a critical role of the NNMT-DNMT1 axis in determining cancer cell reliance on mitochondrial OXPHOS and suggest that NNMT and DNMT1 are faithful biomarkers for OXPHOS-targeting cancer therapies.

13.
ACS Omega ; 7(21): 17703-17712, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35664612

RESUMO

Though there are many toxicological studies on metal nanoparticles (NPs), it remains difficult to explain discrepancies observed between studies, largely due to the lack of positive controls and disconnection between physicochemical properties of nanomaterials with their toxicities at feasible exposures in a specified test system. In this study, we investigated effects of particle size and surface charge on in vitro mutagenic response and in vivo embryonic toxicity for newly synthesized silver nanoclusters (AgNCs) at human or environmental relevant exposure and compared the new findings with one of the most common nanoscale particles, titanium dioxide NPs (TiO2 NPs as a positive control). We hypothesized that the interaction of the test system and physicochemical properties of nanomaterials are critical in determining their toxicities at concentrations relevant with human or environmental exposures. We assessed the mutagenicity of the AgNCs (around 2 nm) and two sizes of TiO2 NPs (i.e., small: 5-15 nm, big: 30-50 nm) using a Salmonella reverse mutation assay (Ames test). The smallest size of AgNCs showed the highest mutagenic activity with the Salmonella strain TA100 in the absence and presence of the S9 mixture, because the AgNCs maintained the nano-size scale in the Ames test, compared with two other NPs. For TiO2 NPs, the size effect was interfered by the agglomeration of TiO2 NPs in media and the generation of oxidative stress from the NPs. The embryonic toxicity and the liver oxidative stress were evaluated using a chicken embryo model at three doses (0.03, 0.33, and 3.3 µg/g egg), with adverse effects on chicken embryonic development in both sizes of TiO2 NPs. The non-monotonic response was determined for developmental toxicity for the tested NPs. Our data on AgNCs was different from previous findings on AgNPs. The chicken embryo results showed some size dependency of nanomaterials, but they were more well correlated with lipid peroxidation (malondialdehyde) in chicken fetal livers. A different level of agglomeration of TiO2 NPs and AgNCs was observed in the assay media of Ames and chicken embryo tests. These results suggest that the test nanotoxicities are greatly impacted by the experimental conditions and the nanoparticle's size and surface charge.

14.
J Anim Sci ; 100(6)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35486739

RESUMO

Our objectives were to compare the antifungal activity of 5 lignosulfonates, and 2 chitosans against fungi isolated from spoiled hay, and assess the effects of an optimized lignosulfonate, chitosan, and propionic acid (PRP) on high-moisture alfalfa hay. In experiment 1, we determined the minimum inhibitory concentration and minimum fungicidal concentration of 4 sodium lignosulfonates, 1 magnesium lignosulfonate, 2 chitosans, and PRP (positive control) against Aspergillus amoenus, Mucor circinelloides, Penicillium solitum, and Debaromyces hansenii at pH 4 and 6. Among sodium lignosulfonates, the one from Sappi Ltd. (NaSP) was the most antifungal at pH 4. However, chitosans had the strongest fungicidal activity with the exception of M. circinelloides at both pH 4 and 6. PRP had more antifungal effects than NaSP and was only better than chitosans for M. circinelloides. In experiment 2, we evaluated the effects of 3 additives (ADV): optimized NaSP (NaSP-O, UMaine), naïve chitosan (ChNv, Sigma-Aldrich), and PRP on high-moisture alfalfa hay. The experimental design was a randomized complete block design replicated 5 times. Treatment design was the factorial combination of 3 ADV× 5 doses (0, 0.25, 0.5, 1, and 2% w/w fresh basis). Additives were added to 35 g of sterile alfalfa hay (71.5 ± 0.23% DM), inoculated with a mixture of previously isolated spoilage fungi (5.8 log cfu/fresh g), and aerobically incubated in vitro for 23 d (25°C). After incubation, DM losses were reduced by doses as low as 0.25% for both NaSP-O and PRP (x¯=1.61) vs. untreated hay (24.0%), partially due to the decrease of mold and yeast counts as their doses increased. Also, hay NH3-N was lower in NaSP-O and PRP, with doses as low as 0.25%, relative to untreated hay (x¯=1.13 vs. 7.80% of N, respectively). Both NaSP-O and PRP increased digestible DM recovery (x¯=69.7) and total volatile fatty acids (x¯=94.3), with doses as low as 0.25%, compared with untreated hay (52.7% and 83.8 mM, respectively). However, ChNv did not decrease mold nor yeast counts (x¯=6.59 and x¯=6.16 log cfu/fresh g, respectively) and did not prevent DM losses relative to untreated hay. Overall, when using an alfalfa hay substrate in vitro, NaSP-O was able to prevent fungal spoilage to a similar extent to PRP. Thus, further studies are warranted to develop NaSP-O as a hay preservative under field conditions.


In our first experiment, we assessed the antifungal activity of two major types of byproducts, one known as lignosulfonates (5 types), which are generated by paper mills, and another known as chitosans (2 types), which are generated from shellfish. These were tested against four fungi isolated from spoiled hay. We observed that acidic conditions are not necessary for chitosans but are crucial to activate the antifungal properties of lignosulfonates. Also, we found that sodium lignosulfonate from Sappi Ltd. was the most antifungal relative to other sodium lignosulfonates from other manufacturers. Chitosans had stronger fungicidal activity than propionic acid or lignosulfonates against all but one mold tested. In our second experiment, we compared the best treatments from experiment 1 against propionic acid using alfalfa hay as a substrate to grow the same fungi tested in experiment 1. None of the doses of chitosan prevented spoilage on high moisture hay, showing results similar to untreated hay. In contrast, an optimized sodium lignosulfonate and propionic acid prevented fungal spoilage of alfalfa hay with doses as low as 0.25%.


Assuntos
Quitosana , Medicago sativa , Animais , Antifúngicos/farmacologia , Quitosana/farmacologia , Técnicas In Vitro/veterinária , Lignina/análogos & derivados , Medicago sativa/microbiologia , Sódio , Leveduras
15.
Chem Res Toxicol ; 35(4): 550-568, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35286071

RESUMO

Lab animals such as mice and rats are widely used in toxicity research of food additive and pharmaceutics, despite the well-recognized research limitation such as the inability to simulate human neurological diseases, faster absorption of chemicals, big variations among species, and high cost when using a large number of animals. The Society of Toxicology's guidance now focuses on minimizing discomfort and distress of lab animals, finding alternative ways to reduce animal number, replacing animals with in vitro models, and complying to the animal welfare policies. The chicken embryonic model can be a better alternative to mice and rats because of its abundant availability and cost-effectiveness. It can be studied in both laboratory and natural environment, with easy manipulation in ovo or in vivo. The objective of this review paper is to evaluate the use of chicken embryonic model in toxicity evaluation for endocrine-disrupting chemicals (EDCs) and nanoparticles (NPs) by different end points to determine more comprehensive toxic responses. The end points include chicken embryonic mortality and hatchability, developmental malformation analysis, hormonal imbalance, physiological changes in endocrine organs, and antiangiogenesis. Major research methodologies using chicken embryos are also summarized to demonstrate their versatile practice and valuable application in modern toxicity evaluation of EDCs and NPs.


Assuntos
Disruptores Endócrinos , Nanopartículas , Animais , Embrião de Galinha , Galinhas , Disruptores Endócrinos/toxicidade , Camundongos , Nanopartículas/toxicidade , Ratos
16.
ACS Omega ; 7(6): 4757-4768, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187296

RESUMO

Flavonoids are bioactive phenolic compounds widely present in plant food and used in various nutraceutical, pharmaceutical, and cosmetic products. However, recent studies showed rising concerns of endocrine disruptions and developmental toxicities for many flavonoids. To understand the impacts of flavonoid structure on toxicity, we used a new multitiered platform to investigate the toxicities of four common flavonoids, luteolin, apigenin, quercetin, and genistein, from flavone, flavonol, and isoflavone. Weak estrogenic activity was detected for four flavonoids (genistein, apigenin, quercetin, and luteolin) at 10-12 to 10-7 M by the MCF-7 cell proliferation assay, which agreed with the molecular docking results. Consistent with the simulation results of Toxicity Estimation Software Tool, genistein and luteolin showed high developmental toxicity in the chicken embryonic assay (45-477 µg/kg) with mortality rate up to 50%. Luteolin, quercetin, and apigenin showed signs of mutagenicity at 5 × 10-3 pmol/plate. The findings showed nonmonotonic dose responses for the chemicals.

17.
J Appl Toxicol ; 42(3): 423-435, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34448506

RESUMO

Lignin and lignin-based materials have received considerable attention in various fields due to their promise as sustainable feedstocks. Guaiacol (G) and syringol (S) are two primary monolignols that occur in different ratios for different plant species. As methoxyphenols, G and S have been targeted as atmospheric pollutants and their acute toxicity examined. However, there is a rare understanding of the toxicological properties on other endpoints and mixture effects of these monolignols. To fill this knowledge gap, our study investigated the impact of different S/G ratios (0.5, 1, and 2) and three lignin depolymerization samples from poplar, pine, and miscanthus species on mutagenicity and developmental toxicity. A multitiered method consisted of in silico simulation, in vitro Ames test, and in vivo chicken embryonic assay was employed. In the Ames test, syringol showed a sign of mutagenicity, whereas guaiacol did not, which agreed with the T.E.S.T. simulation. For three S and G mixture and lignin monomers, mutagenic activity was related to the proportion of syringol. In addition, both S and G showed developmental toxicity in the chicken embryonic assay and T.E.S.T. simulation, and guaiacol had a severe effect on lipid peroxidation. A similar trend and comparable developmental toxicity levels were detected for S and G mixtures and the three lignin depolymerized monomers. This study provides data and insights on the differential toxicity of varying S/G ratios for some important building blocks for bio-based materials.


Assuntos
Guaiacol/toxicidade , Lignina/química , Mutagênese , Mutagênicos/toxicidade , Pirogalol/análogos & derivados , Testes de Toxicidade , Animais , Embrião de Galinha , Guaiacol/metabolismo , Lignina/metabolismo , Testes de Mutagenicidade , Mutagênicos/metabolismo , Pirogalol/metabolismo , Pirogalol/toxicidade
18.
J Agric Food Chem ; 69(45): 13255-13259, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34784718

RESUMO

This is the second special issue of the Journal of Agricultural and Food Chemistry (JAFC) that reviews the Agricultural and Food Chemistry Division (AGFD) technical program from a national meeting of the American Chemical Society (ACS). The 260th meeting was virtually held on August 17-20, 2020 as a result of the COVID-19 pandemic. Although it was the first-ever all online meeting in ACS history, a total of 311 abstracts were submitted to the AGFD technical program for oral and poster presentations and 34 technical sessions were held in 22 symposia, which covered a broad range of food and agricultural topics. The very first virtual ACS meeting was successful with the high quality of presentations, the number of online audiences, and seamless technology.


Assuntos
COVID-19 , Pandemias , Agricultura , Alimentos , Humanos , SARS-CoV-2 , Estados Unidos
19.
Carcinogenesis ; 42(5): 753-761, 2021 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-33677528

RESUMO

Sorafenib is commonly used to treat advanced human hepatocellular carcinoma (HCC). However, clinical efficacy has been limited by drug resistance. In this study, we used label-free quantitative proteomic analysis to systematically investigate the underlying mechanisms of sorafenib resistance in HCC cells. A total of 1709 proteins were confidently quantified. Among them, 89 were differentially expressed and highly enriched in the processes of cell-cell adhesion, negative regulation of apoptosis, response to drug and metabolic processes involving in sorafenib resistance. Notably, folate receptor α (FOLR1) was found to be significantly upregulated in resistant HCC cells. In addition, in vitro studies showed that overexpression of FOLR1 decreased the sensitivity of HCC cells to sorafenib, whereas siRNA-directed knockdown of FOLR1 increased the sensitivity of HCC cells to sorafenib. Immunoprecipitation-mass spectrometry analysis suggested a strong link between FOLR1 and autophagy-related proteins. Further biological experiments found that FOLR1-related sorafenib resistance was accompanied by the activation of autophagy, whereas inhibition of autophagy significantly reduced FOLR1-induced cell resistance. These results suggest the driving role of FOLR1 in HCC resistance to sorafenib, which may be exerted through FOLR1-induced autophagy. Therefore, this study may provide new insights into understanding the mechanism of sorafenib resistance.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Receptor 1 de Folato/genética , Neoplasias Hepáticas/tratamento farmacológico , Proteômica , Apoptose/efeitos dos fármacos , Autofagia/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células Hep G2 , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Sorafenibe/efeitos adversos , Sorafenibe/farmacologia
20.
Food Chem Toxicol ; 150: 112038, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33571611

RESUMO

Thymol and carvacrol are phenolic isomers with the potential developmental toxicity and endocrine disruptions (ED) at low concentrations. However, few reports estimated their toxicity and ED below 10-6 M (150 µg/L) (MW of thymol and carvacrol: 150 g/mol). In this study, both chemicals were determined for the developmental toxicity and potential ED at 500 µg/kg and 50 µg/kg using the chicken embryonic assay, potential estrogenic activity (EA) at 10-12 to 10-7 M (1.5 × 10-4 to 15 µg/L) by the MCF-7 cell proliferation assay, mutagenicity at 10-12 to 10-6 M (1.5 × 10-4 to 150 µg/L) by the Ames test, and an in silico method for ED. Carvacrol showed mutagenic risks at 10-7, 10-8, and 10-11 M (15, 1.5, and 0.0015 µg/L) while thymol at 10-6 and 10-8 M (150 and 1.5 µg/L). Carvacrol negatively impacted embryonic growth at 50 µg/kg, with weak EA at 10-8 M (1.5 µg/L). Carvacrol but not thymol had weak EA at 10-12 M (1.5 × 10-4 µg/L). Molecular docking to 14 types of hormone-related receptors revealed that carvacrol had higher binding affinities to two estrogen receptors and the mineralocorticoid receptor than those to thymol. Carvacrol and thymol varied in toxicities due to a different location of one phenolic hydroxyl group.


Assuntos
Cimenos/toxicidade , Estrogênios/toxicidade , Timol/toxicidade , Animais , Embrião de Galinha , Cimenos/administração & dosagem , Cimenos/química , Estradiol/química , Estradiol/farmacologia , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Estrutura Molecular , Mutagênese , Ligação Proteica , Receptores de Estrogênio , Timol/administração & dosagem , Timol/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA