Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biomedicines ; 8(11)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142890

RESUMO

Chronic kidney disease (CKD) is a public health problem and its prevalence has increased worldwide; patients are commonly unaware of the condition. The present study aimed to investigate whether exhaled breath ammonia via vertical-channel organic semiconductor (V-OSC) sensor measurement could be used for rapid CKD screening. We enrolled 121 CKD stage 1-5 patients, including 19 stage 1 patients, 26 stage 2 patients, 38 stage 3 patients, 21 stage 4 patients, and 17 stage 5 patients, from July 2019 to January 2020. Demographic and laboratory data were recorded. The exhaled ammonia was collected and rapidly measured by the V-OSC sensor to correlate with kidney function. Results showed no significant difference in age, sex, body weight, hemoglobin, albumin level, and comorbidities in different CKD stage patients. Correlation analysis demonstrated a good correlation between breath ammonia and blood urea nitrogen levels, serum creatinine levels, and estimated glomerular filtration rate (eGFR). Breath ammonia concentration was significantly elevated with increased CKD stage compared with the previous stage (CKD stage 1/2/3/4/5: 636 ± 94; 1020 ± 120; 1943 ± 326; 4421 ± 1042; 12781 ± 1807 ppb, p < 0.05). The receiver operating characteristic curve analysis showed an area under the curve (AUC) of 0.835 (p < 0.0001) for distinguishing CKD stage 1 from other CKD stages at 974 ppb (sensitivity, 69%; specificity, 95%). The AUC was 0.831 (p < 0.0001) for distinguishing between patients with/without eGFR < 60 mL/min/1.73 m2 (cutoff 1187 ppb: sensitivity, 71%; specificity, 78%). At 886 ppb, the sensitivity increased to 80% but the specificity decreased to 69%. This value is suitable for kidney function screening. Breath ammonia detection with V-OSC is a real time, inexpensive, and easy to administer measurement device for screening CKD with reliable diagnostic accuracy.

2.
Anal Chem ; 85(1): 245-50, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23186304

RESUMO

In this paper, one simple and label-free biosensing method has been developed for determining the binding kinetic constants of antiovalbumin antibody (anti-OVA) and anti-mouse IgG antibody using the fiber optic particle plasmon resonance (FOPPR) biosensor. The FOPPR sensor is based on gold-nanoparticle-modified optical fiber, where the gold nanoparticle surface has been modified by a mixed self-assembled monolayer for conjugation of a molecular probe reporter (ovalbumin or mouse IgG) to dock with the corresponding analyte species such as anti-OVA or anti-mouse IgG. The binding process, occurring when an analyte reacts with a probe molecule immobilized on the optical fiber, can be monitored in real-time. In addition, by assuming a Langmuir-type adsorption isotherm to measure the initial binding rate, the quantitative determination of binding kinetic constants, the association and dissociation rate constants, yields k(a) of (7.21 ± 0.4) × 10(3) M(-1) s(-1) and k(d) of (2.97 ± 0.1) × 10(-3) s(-1) for OVA/anti-OVA and k(a) of (1.45 ± 0.2) × 10(6) M(-1) s(-1) and k(d) of (2.97 ± 0.6) × 10(-2) s(-1) for mouse IgG/anti-mouse IgG. We demonstrate that the FOPPR biosensor can study real-time biomolecular interactions.


Assuntos
Técnicas Biossensoriais , Imunoglobulina G/imunologia , Ovalbumina/imunologia , Ressonância de Plasmônio de Superfície , Animais , Anticorpos Imobilizados/química , Anticorpos Imobilizados/imunologia , Afinidade de Anticorpos , Reações Antígeno-Anticorpo , Ouro/química , Imunoglobulina G/química , Cinética , Nanopartículas Metálicas/química , Camundongos , Fibras Ópticas
3.
Anal Chim Acta ; 697(1-2): 75-82, 2011 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-21641421

RESUMO

This article reports the integration of the fiber optic-particle plasmon resonance (FO-PPR) biosensor with a microfluidic chip to reduce response time and improve detection limit. The microfluidic chip made of poly(methyl methacrylate) had a flow-channel of dimensions 4.0 cm × 900 µm × 900 µm. A partially unclad optical fiber with gold or silver nanoparticles on the core surface was placed within the flow-channel, where the volume of the flow space was about 14 µL. Results using sucrose solutions of various refractive indexes show that the refractive index resolution improves by 2.4-fold in the microfluidic system. The microfluidic chip is capable of delivering a precise amount of biological samples to the detection area without sample dilution. Several receptor/analyte pairs were chosen to examine the biosensing capability of the integrated platform: biotin/streptavidin, biotin/anti-biotin, DNP/anti-DNP, OVA/anti-OVA, and anti-MMP-3/MMP-3. Results show that the response time to achieve equilibrium can be shortened from several thousand seconds in a conventional liquid cell to several hundred seconds in a microfluidic flow-cell. In addition, the detection limit also improves by about one order of magnitude. Furthermore, the normalization by using the relative change of transmission response as the sensor output alleviate the demand on precise optical alignment, resulting in reasonably good chip-to-chip measurement reproducibility.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Fibras Ópticas , Integração de Sistemas , Estudos de Viabilidade , Ouro/química , Humanos , Indicadores e Reagentes/química , Limite de Detecção , Metaloproteinase 3 da Matriz/análise , Nanopartículas Metálicas/química , Líquido Sinovial/enzimologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA