RESUMO
Intracerebral hemorrhage (ICH) is a severe condition characterized by bleeding within brain tissue. Primary brain injury in ICH results from a mechanical insult caused by blood accumulation, whereas secondary injury involves inflammation, oxidative stress, and disruption of brain physiology. miR-195-5p may participate in ICH pathology by regulating cell proliferation, oxidative stress, and inflammation. Therefore, we assessed the performance of miR-195-5p in alleviating ICH-induced secondary brain injury. ICH was established in male Sprague-Dawley rats (7 weeks old, 200-250 g) via the stereotaxic intrastriatal injection of type IV bacterial collagenase, after which miR-195-5p was administered intravenously. Neurological function was assessed using corner turn and forelimb grip strength tests. Protein expression was assessed by western blotting and ELISA. The miR-195-5p treatment significantly improved neurological function; modulated macrophage polarization by promoting anti-inflammatory marker (CD206 and Arg1) production and inhibiting pro-inflammatory marker (CD68 and iNOS) production; enhanced Akt signalling, reduced oxidative stress by increasing Sirt1 and Nrf2 levels, and attenuated inflammation by decreasing NF-κB activation; inhibited apoptosis via increased Bcl-2 and decreased cleaved caspase-3 levels; and regulated synaptic plasticity by modulating NMDAR2A, NMDAR2B, BDNF, and TrkB expression and ERK and CREB phosphorylation. In conclusion, miR-195-5p exerts neuroprotective effects in ICH by reducing inflammation and oxidative stress, inhibiting apoptosis, and restoring synaptic plasticity, ultimately restoring behavioral recovery, and represents a promising therapeutic agent that warrants clinical studies.
Assuntos
Apoptose , Hemorragia Cerebral , MicroRNAs , Neurônios , Estresse Oxidativo , Ratos Sprague-Dawley , Animais , Hemorragia Cerebral/metabolismo , Hemorragia Cerebral/patologia , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Ratos , Neurônios/metabolismo , Neurônios/patologia , Inflamação/metabolismo , Inflamação/patologia , Transdução de Sinais , Modelos Animais de DoençasRESUMO
Background and Objectives: Pediatric traumatic brain injury (pTBI) remains a major pediatric public health problem, despite well-developed injury prevention programs. The purpose of this study is to analyze the emergency surgical outcomes of pTBI in a single institute ten-year retrospective study to offer a real-world clinical result. Materials and Methods: Our institute presented a clinical retrospective, single-institute research study of 150 pediatric TBI cases that were diagnosed and underwent emergency surgical treatment from 2010 to 2019. Results: The incidence of radiological findings is detailed as follows: brain edema (30%, 45/150), followed by acute subdural hematoma (27.3%, 41/150), epidural hematoma (21.3%, 32/150), chronic subdural hemorrhage (10%, 15/150), skull fracture (6.7%, 10/150), and traumatic subarachnoid hemorrhage (4.7%, 7/150). Surgical intervention data revealed that decompressive craniectomy was still the main effective surgical method. The results showed longer hospital stays and higher morbidity rates in the brain edema, acute subdural hematoma, and chronic subdural hemorrhage groups, which were viewed as poor surgical outcome groups. Epidural hematoma, skull fracture and traumatic subarachnoid hemorrhage were categorized into good surgical outcome groups. Notably, the data revealed gross improvement in Glasgow Coma Scale/Score (GCS) evolution after surgical interventions, and the time to cranioplasty was a significant factor in the development of post-traumatic hydrocephalus (PTH). Conclusions: Our study provided real-world data for the distribution of etiology in pTBI and also categorized it into six groups, indicating disease-orientated treatment. In addition, our data supported that decompressive craniectomy (DC) remains a mainstay surgical treatment in pTBI and early cranioplasty could decrease the incidence of PTH.
Assuntos
Lesões Encefálicas Traumáticas , Humanos , Estudos Retrospectivos , Feminino , Masculino , Lesões Encefálicas Traumáticas/cirurgia , Lesões Encefálicas Traumáticas/complicações , Criança , Taiwan/epidemiologia , Pré-Escolar , Adolescente , Lactente , Resultado do Tratamento , Craniectomia Descompressiva/métodos , Craniectomia Descompressiva/estatística & dados numéricos , Edema Encefálico/cirurgia , Edema Encefálico/etiologia , Hematoma Epidural Craniano/cirurgia , Fraturas Cranianas/cirurgia , Fraturas Cranianas/complicaçõesRESUMO
Chronic pain is a universal public health problem with nearly one third of global human involved, which causes significant distressing personal burden. After painful stimulus, neurobiological changes occur not only in peripheral nervous system but also in central nervous system where somatosensory cortex is important for nociception. Being an ion channel, transient receptor potential vanilloid 1 (TRPV1) act as an inflammatory detector in the brain. Thymic stromal lymphopoietin (TSLP) is a potent neuroinflammation mediator after nerve injury. Bleomycin is applied to treat dermatologic diseases, and its administration elicits local painful sensation. However, whether bleomycin administration can cause chronic pain remains unknown. In the present study, we aimed to investigate how mice develop chronic pain after receiving repeated bleomycin administration. In addition, the relevant neurobiological brain changes after noxious stimuli were clarified. C57BL/6 mice aged five- to six-weeks were randomly classified into two group, PBS (normal) group and bleomycin group which bleomycin was intradermally administered to back five times a week over a three-week period. Calibrated forceps testing was used to measure mouse pain threshold. Western blots were used to assess neuroinflammatory response; immunofluorescence assay was used to measure the status of neuron apoptosis, glial reaction, and neuro-glial communication. Bleomycin administration induced mechanical nociception and activated both TRPV1 and TSLP/TSLPR/pSTAT5 signals in mouse somatosensory cortex. Through these pathways, bleomycin not only activates glial reaction but also causes neuronal apoptosis. TRPV1 and TSLP/TSLPR/pSTAT5 signaling had co-labeled each other by immunofluorescence assay. Taken together, our study provides a new chronic pain model by repeated intradermal bleomycin injection by activating TRPV1 and glial reaction-mediated neuroinflammation via TSLP/TSLPR/pSTAT5 signals.
Assuntos
Bleomicina , Citocinas , Neuroglia , Doenças Neuroinflamatórias , Nociceptividade , Receptores de Citocinas , Transdução de Sinais , Canais de Cátion TRPV , Linfopoietina do Estroma do Timo , Animais , Masculino , Camundongos , Bleomicina/toxicidade , Dor Crônica/induzido quimicamente , Dor Crônica/metabolismo , Citocinas/metabolismo , Imunoglobulinas , Camundongos Endogâmicos C57BL , Neuroglia/metabolismo , Neuroglia/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/induzido quimicamente , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Receptores de Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Fator de Transcrição STAT5/metabolismo , Canais de Cátion TRPV/metabolismoRESUMO
Background Alopecia areata (AA), a disorder of non-scarring hair loss with a variable relapsing and remitting course, is a common autoimmune disease in children. Although it often presents as several focal small patchy bald lesions, early onset AA can lead to a total loss of scalp hair, even body hairs, a severe subtype. Atopic diseases are common concurrent disorders in AA, especially among those with early onset severe type of hair loss. Whether atopic diseases increase the risk of AA in the paediatric population of Taiwan, remains unclear. Objective To identify if atopic diseases increase the risk of AA among pre-teens and teenagers in Taiwan. Methods From Taiwan National Health Insurance Database 2010, we used the claims data to clarify the risk of AA in pre-teens and teenagers with atopic diseases (atopic dermatitis, allergic conjunctivitis, asthma, allergic rhinitis and food allergy) as compared to the general population. Cox proportional hazards model yielded hazard ratios (HRs) to address the impact of atopic diseases, sex and age on AA risk after adjusting for covariates and subsequent stratified analyses. Results Overall, 21,070 children (10,535 patients with atopic diseases and 10,535 normal cohort) aged over nine years were recruited. During a follow-up of 15 years, 39 (0.37%) cases were identified to have AA in the atopic diseases group, while 11 (0.10%) had developed AA in the normal cohort. As compared with the normal population, the paediatric population with atopic diseases had a 9.66-fold higher risk of developing AA. The risk was greater for boys and increased with advanced age. In the atopic diseases group, pre-teens and teenagers with food allergies and Sjogren's syndrome were more likely to have AA. Limitations Only one ethnic group. Conclusion All atopic diseases enhanced the risk of developing AA in Taiwan pre-teens and teenagers. Children with atopic diseases should be monitored to look for the development of AA.
RESUMO
Intracerebral hemorrhage (ICH) remains a devastating disease with high mortality, and there is a lack of effective strategies to improve functional outcomes. The primary injury of ICH is mechanical damage to brain tissue caused by the hematoma. Secondary injury, resulting from inflammation, red cell lysis, and thrombin production, presents a potential target for therapeutic intervention. Inflammation, crucial in secondary brain injury, involves both cellular and molecular components. MicroRNAs (miRNAs) are vital regulators of cell growth, differentiation, and apoptosis. Their deregulation may lead to diseases, and modulating miRNA expression has shown therapeutic potential, especially in cancer. Recent studies have implicated miRNAs in the pathogenesis of stroke, affecting endothelial dysfunction, neurovascular integrity, edema, apoptosis, inflammation, and extracellular matrix remodeling. Preclinical and human studies support the use of miRNA-directed gene modulation as a therapeutic strategy for ICH. Our study focused on the effects of miR-195 in ICH models. Neurological tests, including the corner turn and grip tests, indicated that miR-195 treatment led to improvements in motor function impairments caused by ICH. Furthermore, miR-195-5p significantly reduced brain edema in the ipsilateral hemisphere and restored blood-brain barrier (BBB) integrity, as shown by reduced Evans blue dye extravasation. These results suggest miR-195-5p's potential in attenuating ICH-induced apoptosis, possibly related to its influence on MMP-9 and MMP-2 expression, enzymes associated with secondary brain injury. The anti-apoptotic effects of miR-195-5p, demonstrated through TUNEL assays, further underscore its therapeutic promise in addressing the secondary brain injury and apoptosis associated with ICH. In conclusion, miR-195-5p demonstrates a significant neuroprotective effect against ICH-induced neural damage, brain edema, and BBB disruption, primarily through the downregulation of MMP-9 and MMP-2. Our findings indicate that miR-195-5p holds therapeutic potential in managing cerebral cell death following ICH.
RESUMO
Postherpetic neuralgia (PHN) is a notorious neuropathic pain featuring persistent profound mechanical hyperalgesia with significant negative impact on patients' life quality. CDDO can regulate inflammatory response and programmed cell death. Its derivative also protects neurons from damages by modulating microglia activities. As a consequence of central and peripheral sensitization, applying neural blocks may benefit to minimize the risk of PHN. This study aimed to explore whether CDDO could generate analgesic action in a PHN-rats' model. The behavioural test was determined by calibrated forceps testing. The number of apoptotic neurons and degree of glial cell reaction were assessed by immunofluorescence assay. Activation of PKC-δ and the phosphorylation of Akt were measured by western blots. CDDO improved PHN by decreasing TRPV1-positive nociceptive neurons, the apoptotic neurons, and reversed glial cell reaction in adult rats. It also suppressed the enhanced PKC-δ and p-Akt signalling in the sciatic nerve, dorsal root ganglia (DRG) and spinal dorsal horn. Our research is the promising report demonstrating the analgesic and neuroprotective action of CDDO in a PHN-rat's model by regulating central and peripheral sensitization targeting TRPV1, PKC-δ and p-Akt. It also is the first study to elucidate the role of oligodendrocyte in PHN.
Assuntos
Neuralgia Pós-Herpética , Neuralgia , Ácido Oleanólico/análogos & derivados , Humanos , Adulto , Ratos , Animais , Neuralgia Pós-Herpética/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Neuralgia/metabolismo , Analgésicos , Gânglios Espinais/metabolismo , Canais de Cátion TRPV/metabolismoRESUMO
Neuropathic pain following nerve injury is a complex condition, which often puts a negative impact on life and remains a sustained problem. To make pain management better is of great significance and unmet need. RTA 408 (Omaveloxone) is a traditional Asian medicine with a valid anti-inflammatory property. Thus, we aim to investigate the therapeutic effect of RTA-408 on mechanical allodynia in chronic constriction injury (CCI) rats as well as the underlying mechanisms. Neuropathic pain was induced by using CCI of the rats' sciatic nerve (SN) and the behavior testing was measured by calibrated forceps testing. Activation of Nrf-2, the phosphorylation of nuclear factor-κB (NF-κB), and the inflammatory response were assessed by western blots. The number of apoptotic neurons and degree of glial cell reaction were examined by immunofluorescence assay. RTA-408 exerts an analgesic effect on CCI rats. RTA-408 reduces neuronal apoptosis and glial cell activation by increasing Nrf-2 expression and decreasing the inflammatory response (TNF-α/ p-NF-κB/ TSLP/ STAT5). These data suggest that RTA-408 is a candidate with potential to reduce nociceptive hypersensitivity after CCI by targeting TSLP/STAT5 signaling.
Assuntos
NF-kappa B , Neuralgia , Triterpenos , Ratos , Animais , NF-kappa B/metabolismo , Constrição , Fator de Transcrição STAT5/metabolismo , Nociceptividade , Ratos Sprague-Dawley , Neuralgia/complicações , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Nervo Isquiático/metabolismo , Hiperalgesia/complicações , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismoRESUMO
2-Cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid-9,11-dihydro-trifluoroethyl amide (CDDO-dhTFEA) has antioxidant and anti-inflammatory activities; however, whether CDDO-dhTFEA has anticancer effects is unclear. The objective of this research was to investigate the possibility of CDDO-dhTFEA as a potential cancer-fighting treatment in glioblastoma cells. Our experiments were performed on U87MG and GBM8401 cells, and we found that CDDO-dhTFEA was effective in reducing cell proliferation in both cell lines, in a manner that was dependent on both time and concentration. Additionally, we observed that CDDO-dhTFEA had a significant impact on the regulation of cell proliferation, which was evident in the increase in DNA synthesis that was observed in both cell types. CDDO-dhTFEA induced G2/M cell cycle arrest and mitotic delay, which may be associated with the inhibition of proliferation. Treatment with CDDO-dhTFEA led to cell cycle G2/M arrest and inhibited proliferation of U87MG and GBM8401 cells by regulating G2/M cell cycle proteins and gene expression in GBM cells in vitro.
RESUMO
RTA dh404 is a novel synthetic oleanolic acid derivative that has been reported to possess anti-allergic, neuroprotective, antioxidative, and anti-inflammatory properties, and exerts therapeutic effects on various cancers. Although CDDO and its derivatives have anticancer effects, the actual anticancer mechanism has not been fully explored. Therefore, in this study, glioblastoma cell lines were exposed to different concentrations of RTA dh404 (0, 2, 4, and 8 µM). Cell viability was evaluated using the PrestoBlue™ reagent assay. The role of RTA dh404 in cell cycle progression, apoptosis, and autophagy was analyzed using flow cytometry and Western blotting. The expression of cell cycle-, apoptosis-, and autophagy-related genes was detected by next-generation sequencing. RTA dh404 reduces GBM8401 and U87MG glioma cell viability. RTA dh404 treated cells had a significant increase in the percentage of apoptotic cells and caspase-3 activity. In addition, the results of the cell cycle analysis showed that RTA dh404 arrested GBM8401 and U87MG glioma cells at the G2/M phase. Autophagy was observed in RTA dh404-treated cells. Subsequently, we found that RTA dh404-induced cell cycle arrest, apoptosis, and autophagy were related to the regulation of associated genes using next-generation sequencing. Our data indicated that RTA dh404 causes G2/M cell cycle arrest and induces apoptosis and autophagy by regulating the expression of cell cycle-, apoptosis-, and autophagy-related genes in human glioblastoma cells, suggesting that RTA dh404 is a potential drug candidate for the treatment of glioblastoma.
Assuntos
Apoptose , Autofagia , Pontos de Checagem do Ciclo Celular , Glioblastoma , Ácido Oleanólico , Humanos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Glioblastoma/patologia , Ácido Oleanólico/farmacologiaRESUMO
Globally, breast cancer is the most common cause of cancer deaths. In Taiwan, it is the most prevalent cancer among females. Since San-Huang-Xie-Xin-Tang (SHXXT) exerts not only an anti-inflammatory but an immunomodulatory effect, it may act as a potent anti-tumor agent. Herein, the study aimed to explore the influence of SHXXT and its constituents on the mortality rate among breast cancer patients in Taiwan regarding the component effect and the dose-relationship effect. By using the Taiwan National Health Insurance (NHI) Research Database (NHIRD), the study analyzed 5387 breast cancer patients taking Chinese herbal medicine (CHM) and 5387 breast cancer patients not using CHM. CHM means SHXXT and its constituents in the study. The Kaplan-Meier method was utilized to determine the mortality probabilities among patients. Whether the CHM influences the mortality rate among patients was estimated by Cox proportional hazard regression analysis. The use of CHM could lower the cancer mortality rate by 59% in breast cancer patients. The protective effect was parallel to the cumulative days of CHM use and the annual average CHM dose. In addition, the mortality rate was lower in patients who used SHXXT compared to those who only used one of its constituents. SHXXT and its constituents were all promising therapeutic weapons against breast cancer.
RESUMO
Neuropathic pain is a debilitating chronic disorder, significantly causing personal and social burdens, in which activated neuroinflammation is one major contributor. Thymic stromal lymphopoietin (TSLP) and interleukin (IL)-33 is important for chronic inflammation. Linalyl acetate (LA) is main component of lavender oil with an anti-inflammatory property through TSLP signaling. The aim of the study is to investigate how LA regulates mechanical hyperalgesia after sciatic nerve injury (SNI). Adult Sprague-Dawley male rats were separated into 3 groups: control group, SNI group and SNI with LA group. LA was administrated intraperitoneally one day before SNI. Pain behavior test was evaluated through calibration forceps testing. Ipsilateral sciatic nerves (SNs), dorsal root ganglions (DRGs) and spinal cord were collected for immunofluorescence staining and Western blotting analyses. SNI rats were more sensitive to hyperalgesia response to mechanical stimulus since operation, which was accompanied by spinal cord glial cells reactions and DRG neuro-glial interaction. LA could relieve the pain sensation, proinflammatory cytokines and decrease the expression of TSLP/TSLPR complex. Also, LA could reduce inflammation through reducing IL-33 signaling. This study is the first to indicate that LA can modulate pain through TSLP/TSLPR and IL-33 signaling after nerve injury.
Assuntos
Neuralgia , Traumatismos dos Nervos Periféricos , Neuropatia Ciática , Masculino , Ratos , Animais , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Interleucina-33 , Ratos Sprague-Dawley , Citocinas/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Neuropatia Ciática/complicações , Inflamação/tratamento farmacológico , Inflamação/complicações , Linfopoietina do Estroma do TimoRESUMO
Osteoporosis is a systemic bone-resorbing disease that easily causes subsequent risk of fracture. Hence, the substantial physical burden of osteoporosis makes it an important public health issue. Seborrheic dermatitis (SD) is a chronic, recurrent, inflammatory skin disease. Despite the advances in medication for treating osteoporosis, identifying undiagnosed osteoporosis patients is still challenging. Since osteoporosis and SD share a similar pathobiology, e.g. inflammation and hormonal imbalance, we aimed to investigate whether the existence of SD increases osteoporosis risk by using the Taiwan National Health Insurance Research Database. A total of 7831 patients aged 18-50 years with SD and a control group of 31 324 patients without SD matched by age, gender, Charlson Comorbidity Index, and index date at a ratio of 1:4 during 1996-2010 were recruited in the study. To measure the cumulative incidence and compare the hazard ratios of osteoporosis between each group, the Kaplan-Meier method and Cox proportional hazard regression models were utilized. It was found that 0.98% of SD patients had osteoporosis. Compared to the non-SD group, the SD group had a 5.95-fold higher osteoporosis risk after adjustment for variables. The impact of SD on osteoporosis risk was largest in the female and young age groups. In addition, the presence of hyperlipidemia, hyperthyroidism, and epilepsy synergistically increased osteoporosis incidence in the SD group. This first large cohort study demonstrated an association between SD and osteoporosis. Since the effect on bone health in SD patients with concomitant diseases is largest in early life, diet or lifestyle recommendations as well as regular bone examinations are advised during follow-up of SD.
Assuntos
Dermatite Seborreica , Osteoporose , Humanos , Feminino , Estudos de Coortes , Dermatite Seborreica/epidemiologia , Fatores de Risco , Estudos Retrospectivos , Osteoporose/epidemiologia , Osteoporose/complicações , Osteoporose/tratamento farmacológico , Incidência , Taiwan/epidemiologiaRESUMO
Although the expression of p53 and epidermal growth factor receptor (EGFR) is associated with therapeutic resistance and patient outcomes in many malignancies, the relationship in astrocytomas is unclear. This study aims to correlate p53 and EGFR expression in brain astrocytomas with overall patient survival. Eighty-two patients with astrocytomas were enrolled in the study. Semi-quantitative p53 and EGFR immunohistochemical staining was measured in tumor specimens. The mean follow-up after astrocytoma surgery was 18.46 months. The overall survival rate was 83%. Survival was reduced in EGFR-positive patients compared with survival in EGFR-negative patients (p < 0.05). However, no significant differences in survival were detected between patients with high and low p53 expression. In patients with low p53 expression, positive EGFR staining was associated with significantly worse survival compared with patients with negative EGFR staining (log-rank test: p < 0.001). Survival rates in positive and negative EGFR groups with high p53 protein expression were similar (log-rank test: p = 0.919). The IC50 of an EGFR inhibitor was higher in GBM cells with high p53 protein expression compared with the IC50 in cells with low p53 expression. Combined EGFR and p53 expression may have prognostic significance in astrocytomas.
RESUMO
Background: The aim of this study was to investigate the learning curve of robotic spine surgery quantitatively with the well-described power law of practice. Methods: Kaohsiung Medical University Hospital set up a robotic spine surgery team by the neurosurgery department in 2013 and the orthopedic department joined the well-established team in 2014. A total of consecutive 150 cases received robotic assisted spinal surgery. The 150 cases, with 841 transpedicular screws were enrolled into 3 groups: the first 50 cases performed by neurosurgeons, the first 50 cases by orthopedic surgeons, and 50 cases by neurosurgeons after the orthopedic surgeons joined the team. The time per screw and accuracy by each group and individual surgeon were analyzed. Results: The time per screw for each group was 9.56 ± 4.19, 7.29 ± 3.64, and 8.74 ± 5.77 minutes, respectively, with p-value 0.0017. The accuracy was 99.6% (253/254), 99.5% (361/363), and 99.1% (222/224), respectively, with p-value 0.77. Though the first group took time significantly more on per screw placement but without significance on the nonlinear parallelism F-test. Analysis of 5 surgeons and their first 10 cases of short segment surgery showed the time per screw by each surgeon was 12.28 ± 5.21, 6.38 ± 1.54, 8.68 ± 3.10, 6.33 ± 1.90, and 6.73 ± 1.81 minutes. The first surgeon who initiated the robotic spine surgery took significantly more time per screw, and the nonlinear parallelism test also revealed only the first surgeon had a steeper learning curve. Conclusion: This is the first study to demonstrate that differences of learning curves between individual surgeons and teams. The roles of teamwork and the unmet needs due to lack of active perception are discussed.
RESUMO
Background: Dementia, a worldwide public-health issue, is regarded as a disorder rather than a normal aging process. Trigeminal neuralgia (TN) is a chronic debilitating pain disorder that impairs daily activities. Both are most prevalent in females and in patients older than 50 years. Recent studies reveal that pain and dementia may have a reciprocal interaction with each other. Objective: In response, we estimated whether adults with TN have an increased dementia risk. Methodology: By means of Taiwan's National Health Insurance Research Database, between 1996 and 2010, 762 patients aged over 50 years in the TN group were matched with 3048 patients in the non-TN group at a ratio of 1:4. Kaplan-Meier method and Cox proportional hazard regression models were also used to determine the cumulative incidence and compare the hazard ratios of dementia in each group. Results: The incidence of dementia was higher in the TN group compared to the non-TN group. After adjusting for covariates, the TN group had a 4.47-fold higher risk of dementia compared to the non-TN group. Additionally, the impact of TN on dementia risk was larger in young-aged patients than in old-aged patients. As well, the age at the time of dementia diagnosis was younger in the TN group compared to the non-TN group. Conclusions: TN is a dementia risk factor. Given the lack of a curative therapy for dementia, early identification of TN patients may help to prevent dementia sequelae.
Assuntos
Demência , Neuralgia do Trigêmeo , Adulto , Idoso , Demência/complicações , Demência/epidemiologia , Feminino , Humanos , Pessoa de Meia-Idade , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco , Neuralgia do Trigêmeo/epidemiologiaRESUMO
Background and objectives: Managing people with trigeminal neuralgia (TN) and osteoporosis is challenging due to their debilitating conditions. Currently, the exact association between TN and osteoporosis in patients remains unknown, although there is potential overlapping of pathophysiological mechanisms. In response, we calculated TN risk in patients who have osteoporosis. Materials and Methods: 45,393 patients aged over 50 years diagnosed with osteoporosis were matched with 45,393 non-osteoporosis patients aged over 50 years (1:1 ratio) who were used as the control group, using data from 1996 to 2010 from Taiwan's National Health Insurance Research Database. The cumulative incidences of subsequent TN and the hazard ratio were estimated using Cox proportional hazards modeling and the Kaplan-Meier method, respectively. Results: Among the total sample, 333 patients were diagnosed with TN during the follow-up period: 205 in the osteoporosis cohort and 128 in the control cohort. Through covariate adjustment, the overall TN incidence showed a 1.80-fold increase in the osteoporosis cohort in comparison with the control cohort (0.60 vs. 0.18 per 1000 person-years, respectively). The High Charlson Comorbidity Index, hypertension, and migraines were risk factors of TN. Conclusions: Osteoporosis patients had a higher TN risk than that of the control cohort. Therefore, early recognition of pain and symptoms in osteoporotic people may help to identify possible TN patients who need prompt therapy.
Assuntos
Osteoporose , Neuralgia do Trigêmeo , Idoso , Estudos de Coortes , Humanos , Incidência , Osteoporose/complicações , Osteoporose/epidemiologia , Estudos Retrospectivos , Neuralgia do Trigêmeo/complicações , Neuralgia do Trigêmeo/epidemiologiaRESUMO
Peripheral nerve injury involves divergent alterations within dorsal root ganglia (DRG) neurons sensitized by persistent inflammation. Thymic stromal lymphopoietin (TSLP) production is crucial in the development of chronic inflammatory responses. Herein, we investigate the changes of TSLP expression in rats' DRG neurons between injured and uninjured sides in the same rat. Linalyl acetate (LA) was served as a TSLP inhibitor and given intraperitoneally. Rats were assigned to be group of chronic constriction injury (CCI) of the sciatic nerve and the group of CCI of the sciatic nerve administrated with LA. Over 14 days, the rats were measured for paw withdrawal thresholds. DRGs were collected to assess morphological changes via immunofluorescence study. After receiving CCI, the rats rapidly developed mechanical hyperalgesia. TSLP expression at DRG, on the ipsilateral injured side, was consistent with changes in pain behaviors. TSLP appeared in nerve fibers with both small diameters and large diameters. Additionally, TSLP was expressed mostly in transient receptor potential vanilloid-1 (TRPV1)-positive nociceptive neurons. Administration with LA can attenuate the pain behaviors and expression of TSLP in DRG neurons, and in apoptotic neurons at the injured side, but not in the contra-lateral uninjured side. Overall, these results imply that altered expressions of TSLP in nociceptive DRG neurons contributed to mechanical hyperalgesia in a CCI rat model.
Assuntos
Citocinas/metabolismo , Gânglios Espinais/metabolismo , Hiperalgesia/metabolismo , Neurônios/metabolismo , Animais , Lesões por Esmagamento/metabolismo , Masculino , Fibras Nervosas/metabolismo , Neuralgia/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Neuropatia Ciática/metabolismo , Linfopoietina do Estroma do TimoRESUMO
A subarachnoid hemorrhage (SAH), leading to severe disability and high fatality in survivors, is a devastating disease. Neuro-inflammation, a critical mechanism of cerebral vasospasm and brain injury from SAH, is tightly related to prognoses. Interestingly, studies indicate that 2-[(pyridine-2-ylmethyl)-amino]-phenol (2-PMAP) crosses the blood-brain barrier easily. Here, we investigated whether the vasodilatory and neuroprotective roles of 2-PMAP were observed in SAH rats. Rats were assigned to three groups: sham, SAH and SAH+2-PMAP. SAHs were induced by a cisterna magna injection. In the SAH+2-PMAP group, 5 mg/kg 2-PMAP was injected into the subarachnoid space before SAH induction. The administration of 2-PMAP markedly ameliorated cerebral vasospasm and decreased endothelial apoptosis 48 h after SAH. Meanwhile, 2-PMAP decreased the severity of neurological impairments and neuronal apoptosis after SAH. Furthermore, 2-PMAP decreased the activation of microglia and astrocytes, expressions of TLR-4 and p-NF-κB, inflammatory markers (TNF-α, IL-1ß and IL-6) and reactive oxygen species. This study is the first to confirm that 2-PMAP has vasodilatory and neuroprotective effects in a rat model of SAH. Taken together, the experimental results indicate that 2-PMAP treatment attenuates neuro-inflammation, oxidative stress and cerebral vasospasm, in addition to ameliorating neurological deficits, and that these attenuating and ameliorating effects are conferred through the TLR-4/NF-κB pathway.
Assuntos
Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Inflamação/complicações , Neurônios/patologia , Piridinas/uso terapêutico , Hemorragia Subaracnóidea/complicações , Vasoespasmo Intracraniano/tratamento farmacológico , Vasoespasmo Intracraniano/etiologia , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas/fisiopatologia , Citocinas/metabolismo , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Atividade Motora/efeitos dos fármacos , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Piridinas/farmacologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Hemorragia Subaracnóidea/fisiopatologia , Receptor 4 Toll-Like/metabolismo , Vasoespasmo Intracraniano/patologia , Vasoespasmo Intracraniano/fisiopatologiaRESUMO
BACKGROUND: Fibroproliferative lesions with intractable pruritus, pain and hyperesthesia that cause uncontrolled scar growth are known as keloids. Migraines are common upsetting headache disorders characterised by frequent recurrence and attacks aggravated by physical activity. Both keloids and migraines can cause physical exhaustion and discomfort in patients; they have similar pathophysiological pathways, that is, the transforming growth factor-ß1 gene and neurogenic inflammation. OBJECTIVE: To investigate subsequent development of migraines in patients with keloids. Methods Data were retrieved from the Taiwan National Health Insurance Research Database. The keloids group included patients aged 20 years and older with a recent diagnosis of keloids(n=9864). The non-keloids group included patients without keloids matched for gender and age at 1-4 ratio (n=39 456). Migraine risk between groups was measured by Cox proportional hazards regression models. Incidence rates and hazard ratios were calculated. RESULTS: During the study period, 103 keloids patients and 323 non-keloids patients developed migraines. The keloids patients had a 2.29-fold greater risk of developing migraines compared with the non-keloids group after adjustment for covariates (1.81 vs 0.55 per 1000 person-years, respectively). In the keloids group, female or patients younger than 50 years were prone to developing migraines. CONCLUSION: The higher tendency to develop migraines in the keloids group in comparison with the non-keloids group suggests that keloids could be a predisposing risk factor for migraine development in adults. Keloids patients who complain of headaches should be examined for migraines.
Assuntos
Queloide , Transtornos de Enxaqueca , Adulto , Feminino , Humanos , Incidência , Queloide/epidemiologia , Transtornos de Enxaqueca/epidemiologia , Fatores de Risco , Taiwan/epidemiologiaRESUMO
Subarachnoid hemorrhage (SAH) is an important subcategory of stroke due to its unacceptably high mortality rate as well as the severe complications it causes, such as cerebral vasospasm, neurological deficits, and cardiopulmonary abnormality. Hepatoma-derived growth factor (HDGF) is a growth factor related to normal development and is involved in liver development and regeneration. This study explored the relationship between SAH and HDGF. Sixty rats were divided into five groups (n = 12/group): (A) control group; (B) rHDGF ab only group [normal animals treated with 50 µM recombinant HDGF antibodies (rHDGF ab)]; (C) SAH group; (D) SAH + pre-rHDGF ab group (SAH animals pre-treated with 50 µM rHDGF ab into the subarachnoid space within 24 h before SAH); and (E) SAH + post-rHDGF ab group (SAH animals post-treated with 50 µM rHDGF ab into the subarachnoid space within 24 h after SAH). At 48 h after SAH, serum and cerebrospinal fluid (CSF) samples were collected to measure the levels of pro-inflammatory factors by ELISA, and rat cortex tissues were used to measure protein levels by western blot analysis. Immunofluorescence staining for Iba-1, GFAP, TUNEL, and NeuN was detected proliferation of microglia and astrocyte and apoptosis of neuron cells. Neurological outcome was assessed by ambulation and placing/stepping reflex responses. Morphology assay showed that pre-treatment and post-treatment with rHDGF ab attenuated vasospasm after SAH. SAH up-regulated the levels of TNF-α, IL-1ß, and IL-6 in both the CSF and serum samples, and both pre- and post-treatment with rHDGF ab inhibited the up-regulation of these pro-inflammatory factors, except for the serum IL-6 levels. Western blot analysis demonstrated that SAH up-regulated pro-BDNF and NFκB protein levels, and both pre- and post-treatment with rHDGF ab significantly reduced the up-regulation. The result from immunofluorescence staining showed that SAH induced proliferation of microglia and astrocyte and apoptosis of neuron cells. Both pre- and post-treatment with rHDGF ab significantly attenuated proliferation of microglia and astrocyte and inhibited apoptosis of neuron cells. Furthermore, treatment with rHDGF ab significantly improved neurological outcome. Blocking HDGF attenuates neuron cell apoptosis and vasospasm through inhibiting inflammation in brain tissue at early phase after SAH.