Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 389
Filtrar
1.
Mol Breed ; 44(8): 55, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39157810

RESUMO

Preventing the widespread occurrence of stripe rust in wheat largely depends on the identification of new stripe rust resistance genes and the breeding of cultivars with durable resistance. In previous study, we reported 6E of wheat-tetraploid Thinopyrum elongatum 6E (6D) substitution line contains adult-stage stripe rust resistance genes. In this study, three novel wheat-tetraploid Th. elongatum translocation lines were generated from the offspring of a cross between common wheat and the 6E (6D) substitution line. Genomic in situ hybridization (GISH), fluorescence in situ hybridization chromosome painting (FISH painting), repetitive sequential FISH, and 55 K SNP analyses indicated that K227-48, K242-82, and K246-6 contained 42 chromosomes and were 6DL·6ES, 2DL·6EL, and 6DS·6EL translocation lines, respectively. The assessment of stripe rust resistance revealed that K227-48 was susceptible to a mixture of Pst races, whereas the 6EL lines K242-82 and K246-6 were highly resistance to stripe rust at the adult stage. Thus, this resistance was due to the chromosome arm 6EL of tetraploid Th. elongatum. The improved agronomic performance of 6DS·6EL translocation line may be a useful novel germplasm resource for wheat breeding programs. For the application of marker-assisted selection (MAS), 47 simple sequence repeat (SSR) markers were developed, showing specific amplification on the chromosome 6E using the whole-genome sequence of diploid Th. elongatum. The 6DS·6EL translocation line and SSR markers have the potential to be deploy for future stripe rust resistance wheat breeding program. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01493-6.

2.
Cereb Cortex ; 34(8)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39094099

RESUMO

Design-based STEM learning is believed to be an effective cross-disciplinary strategy for promoting children's cognitive development. Yet, its impact on executive functions, particularly for disadvantaged children, still need to be explored. This study investigated the effects of short-term intensive design-based STEM learning on executive function among left-behind children. Sixty-one Grade 4 students from a school dedicated to the left-behind children in China were sampled and randomly assigned to an experimental group (10.70 ± 0.47 years old, n = 30) or a control group (10.77 ± 0.43 years old, n = 31). The experimental group underwent a two-week design-based STEM training program, while the control group participated in a 2-week STEM-related reading program. Both groups were assessed with the brain activation from 4 brain regions of interest using functional near-infrared spectroscopy (fNIRS) and behavioral measures during a Stroop task before and after the training. Analysis disclosed: (i) a significant within-group time effect in the experimental group, with posttest brain activation in Brodmann Area 10 and 46 being notably lower during neutral and word conditions; (ii) a significant between-group difference at posttest, with the experimental group showing considerably lower brain activation in Brodmann Area 10 and Brodmann Area 46 than the control group; and (iii) a significant task effect in brain activity among the three conditions of the Stroop task. These findings indicated that this STEM learning effectively enhanced executive function in left-behind children. The discrepancy between the non-significant differences in behavioral performance and the significant ones in brain activation implies a compensatory mechanism in brain activation. This study enriches current theories about the impact of Science, Technology, Engineering, and Mathematics (STEM) learning on children's executive function development, providing biological evidence and valuable insights for educational curriculum design and assessment.


Assuntos
Função Executiva , Aprendizagem , Espectroscopia de Luz Próxima ao Infravermelho , Humanos , Função Executiva/fisiologia , Masculino , Feminino , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Criança , Aprendizagem/fisiologia , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem , Leitura , Matemática , Teste de Stroop , Lateralidade Funcional/fisiologia , China
3.
Nat Commun ; 15(1): 6858, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39127697

RESUMO

Our recent studies have identified p21-activated kinase 4 (PAK4) as a key regulator of lipid catabolism in the liver and adipose tissue, but its role in glucose homeostasis in skeletal muscle remains to be explored. In this study, we find that PAK4 levels are highly upregulated in the skeletal muscles of diabetic humans and mice. Skeletal muscle-specific Pak4 ablation or administering the PAK4 inhibitor in diet-induced obese mice retains insulin sensitivity, accompanied by AMPK activation and GLUT4 upregulation. We demonstrate that PAK4 promotes insulin resistance by phosphorylating AMPKα2 at Ser491, thereby inhibiting AMPK activity. We additionally show that skeletal muscle-specific expression of a phospho-mimetic mutant AMPKα2S491D impairs glucose tolerance, while the phospho-inactive mutant AMPKα2S491A improves it. In summary, our findings suggest that targeting skeletal muscle PAK4 may offer a therapeutic avenue for type 2 diabetes.


Assuntos
Proteínas Quinases Ativadas por AMP , Diabetes Mellitus Tipo 2 , Glucose , Resistência à Insulina , Músculo Esquelético , Quinases Ativadas por p21 , Animais , Quinases Ativadas por p21/metabolismo , Quinases Ativadas por p21/genética , Glucose/metabolismo , Fosforilação , Músculo Esquelético/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Humanos , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Masculino , Transportador de Glucose Tipo 4/metabolismo , Transportador de Glucose Tipo 4/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo
4.
Plant Physiol ; 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39158082

RESUMO

Karyotypes provide key cytogenetic information on phylogenetic relationships and evolutionary origins in related plant species. The St genome of Pseudoroegneria contributes to eight alloploid genera, representing over half of the species that are highly valuable for wheat (Triticum aestivum) breeding and for understanding Triticeae species evolution. However, St chromosome characterization is challenging due to limited cytogenetic markers and DNA information. We developed a complete set of St genome-specific chromosome painting probes for identification of the individual chromosomes 1St to 7St based on the genome sequences of Pse. libanotica and wheat. We revealed the conservation of St chromosomes in St-containing species by chromosome painting, including Pseudoroegneria, Roegneria, Elymus, and Campeiostachys. Notably, the Y genome showed hybridization signals, albeit weaker than those of the St genome. The awnless species harboring the Y genome exhibited more intense hybridization signals compare to the awned species in Roegneria and Campeiostachys, yet weaker than the hybridization signals of the St genome in autotetraploid Pse. strigosa. Although awnless species were morphologically more similar to each other, phenotypic divergence progressively increased from awnless to awned species. Our results indicate that the Y genome originated from the St genome and shed light on the possible origin of the Roegneria and Campeiostachys species, enhancing our understanding of St-genome-containing species evolution.

5.
J Colloid Interface Sci ; 677(Pt A): 569-576, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39111092

RESUMO

The design and fabrication of high-performance, inexpensive and durable electrocatalyst toward hydrogen evolution reaction (HER) is supremely significant for alleviating energy crisis and environmental concerns, but still remaining challenging. Herein, we develop an experimental work based on etching and reduction strategy to reveal the remarkable effect of cation/anion co-doping in CoMoO4 on its intrinsic HER activity. The CoMoO4 with Fe and B incorporation (Fe/B-CoMoO4) exhibits a current density of 10 mA cm-2 with strikingly low potential of 38 mV coupling with Tafel slope of 51 mV dec-1, and manifesting a robust durability for 100 h with no attenuation, which is comparable to the state-of-the-art commercial Pt/C catalyst. The collective experimental and theoretical findings concomitantly illustrate that the enhanced performances are due to the strong synergistic effect resulting from the co-doping of Fe and B, which plays a pivotal role in finely tuning the electronic structure of CoMoO4, further optimizing the adsorption free energy of H intermediates and shifting the center of the d-band of Fe/B-CoMoO4 away from the Fermi level. This fantastic work highlights the critical role of foreign element incorporating for optimizing electronic structure of transition metal oxides toward HER, and offers valuable guiding principles for rational design of more efficient energy conversion devices.

6.
Adv Mater ; : e2400166, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39049804

RESUMO

Anomalous Hall effect (AHE), one of the most important electronic transport phenomena, generally appears in ferromagnetic materials but is rare in materials without magnetic elements. Here, a study of La3MgBi5 is presented, whose band structure carries multitype Dirac fermions. Although magnetic elements are absent in La3MgBi5, the signals of AHE can be observed. In particular, the anomalous Hall conductivity is extremely large, reaching 42,356 Ω-1 cm-1 with an anomalous Hall angle of 8.8%, the largest one that has been observed in the current AHE systems. The AHE is suggested to originate from the combination of skew scattering and Berry curvature. Another unique property discovered in La3MgBi5 is the axial diamagnetism. The diamagnetism is significantly enhanced and dominates the magnetization in the axial directions, which is the result of the restricted motion of the Dirac fermion at the Fermi level. These findings not only establish La3MgBi5 as a suitable platform to study AHE and quantum transport but also indicate the great potential of 315-type Bi-based materials for exploring novel physical properties.

7.
BMC Cardiovasc Disord ; 24(1): 381, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39044140

RESUMO

BACKGROUND: Metabolic abnormalities and immune inflammation are deeply involved in pulmonary vascular remodelling and the development of pulmonary hypertension (PH). However, the regulatory mechanisms of glycolysis in macrophages are still elusive. Cumulative evidence indicates that ß-catenin plays a crucial role in metabolic reprogramming. This study aimed to investigate the effect of ß-catenin on macrophage glycolysis in PH. METHODS: LPS-induced BMDMs were generated via in vitro experiments. A monocrotaline (MCT)-induced PH rat model was established, and the ß-catenin inhibitor XAV939 was administered in vivo. The role of ß-catenin in glycolysis was analysed. The degree of pulmonary vascular remodelling was measured. RESULTS: ß-catenin was significantly increased in both in vitro and in vivo models. In LPS-induced BMDMs, ß-catenin increased the levels of hexokinase 2 (HK2), phosphofructokinase (PFK), M2-pyruvate kinase (PKM2), lactate dehydrogenase (LDH), and lactate (LA) and the expression of inflammatory cytokines and promoted PASMC proliferation and migration in vitro. XAV939 decreased the level of glycolysis and downregulated the expression of inflammatory cytokines in vivo. MCT promoted pulmonary arterial structural remodelling and right ventricular hypertrophy, and XAV939 alleviated these changes. CONCLUSIONS: Our findings suggest that ß-catenin is involved in the development of PH by promoting glycolysis and the inflammatory response in macrophages. Inhibition of ß-catenin could improve the progression of PH.


Assuntos
Modelos Animais de Doenças , Glicólise , Hipertensão Pulmonar , Macrófagos , Monocrotalina , Artéria Pulmonar , Ratos Sprague-Dawley , Remodelação Vascular , beta Catenina , Animais , Glicólise/efeitos dos fármacos , beta Catenina/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/fisiopatologia , Masculino , Remodelação Vascular/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Artéria Pulmonar/metabolismo , Artéria Pulmonar/efeitos dos fármacos , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/patologia , Proliferação de Células/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/patologia , Transdução de Sinais , Hipertrofia Ventricular Direita/metabolismo , Hipertrofia Ventricular Direita/fisiopatologia , Hipertrofia Ventricular Direita/induzido quimicamente , Mediadores da Inflamação/metabolismo , Ratos , Movimento Celular/efeitos dos fármacos
8.
Biochem Pharmacol ; 227: 116437, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39025410

RESUMO

The normal liver has an extraordinary capacity of regeneration. However, this capacity is significantly impaired in steatotic livers. Emerging evidence indicates that metabolic dysfunction associated steatotic liver disease (MASLD) and liver regeneration share several key mechanisms. Some classical liver regeneration pathways, such as HGF/c-Met, EGFR, Wnt/ß-catenin and Hippo/YAP-TAZ are affected in MASLD. Some recently established therapeutic targets for MASH such as the Thyroid Hormone (TH) receptors, Glucagon-like protein 1 (GLP1), Farnesoid X receptor (FXR), Peroxisome Proliferator-Activated Receptors (PPARs) as well as Fibroblast Growth Factor 21 (FGF21) are also reported to affect hepatocyte proliferation. With this review we aim to provide insight into common molecular pathways, that may ultimately enable therapeutic strategies that synergistically ameliorate steatohepatitis and improve the regenerating capacity of steatotic livers. With the recent rise of prolonged ex-vivo normothermic liver perfusion prior to organ transplantation such treatment is no longer restricted to patients undergoing major liver resection or transplantation, but may eventually include perfused (steatotic) donor livers or even liver segments, opening hitherto unexplored therapeutic avenues.


Assuntos
Fígado Gorduroso , Regeneração Hepática , Humanos , Regeneração Hepática/fisiologia , Animais , Fígado Gorduroso/metabolismo
9.
Clin Transl Oncol ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066875

RESUMO

PURPOSE: Breast cancer (BRCA) is characterized by a unique metastatic pattern, often presenting with bone metastasis (BoM), posing significant clinical challenges. Through the study of the immune microenvironment in BRCA BoM offer perspectives for therapeutic interventions targeting this specific metastatic manifestation of BRCA. METHODS: This study employs single-cell RNA sequencing and TCGA data analysis to comprehensively compare primary tumors (PT), lymph node metastasis (LN), and BoM. RESULTS AND CONCLUSIONS: Our investigation identifies a metastatic niche in BoM marked by an increased abundance of cancer-associated fibroblasts (CAFs) and reduced immune cell presence. A distinct subtype (State 1) of BRCA BoM cells associated with adverse prognosis is identified. State 1, displaying heightened stemness traits, may represent an initiation phase for BoM in BRCA. Complex cell communications involving tumor, stromal, and immune cells are revealed. Interactions of FN1, SPP1, and MDK correlate with elevated immune cells in BoM. CD46, MDK, and PTN interactions drive myofibroblast activation and proliferation, contributing to tissue remodeling. Additionally, MDK, PTN, and FN1 interactions influence FAP+ CAF activation, impacting cell adhesion and migration in BoM. These insights deepen our understanding of the metastatic niche in breast cancer BoM.

10.
Clin Chim Acta ; 562: 119850, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38977167

RESUMO

OBJECTIVE: The receptor-interacting protein kinase 3 (RIPK3) is a pivotal component for triggering necroptosis. We intended to investigate predictive effects of serum RIPK3 levels on early hematoma growth (EHG) and poor neurological outcome after acute intracerebral hemorrhage (ICH). METHODS: In this prospective cohort study, 183 ICH patients and 100 controls were enrolled for measuring serum RIPK3 levels. National Institutes of Health Stroke Scale (NIHSS) and hematoma volume were recorded as the severity indicators. EHG and poststroke 6-month unfavorable outcome (modified Rankin Scale scores of 3-6) were registered as the two prognostic parameters. Multivariate analyses were implemented to discern relevance of serum RIPK3 to ICH severity and prognosis. RESULTS: Serum RIPK3 levels of patients, which were dramatically higher than those of controls, were independently related to NIHSS scores, hematoma volume, EHG, 6-month mRS scores and unfavorable outcome. Risks of EHG and unfavorable outcome were linearly pertinent to and efficiently discriminated by RIPK3 levels under restricted cubic spline and receiver operating characteristic curve respectively. RIPK3 levels nonsignificantly interacted with age, gender, hypertension, etc. Predictive ability of RIPK3 levels resembled those of NIHSS scores and hematoma volume. The prediction models, in which serum RIPK3, NIHSS scores and hematoma volume were integrated, were visually displayed via nomograms. The models' predictive capabilities substantially surpassed that of serum RIPK3, NIHSS scores and hematoma volumes alone. The models kept stable under calibration curve. CONCLUSION: A profound increase of serum RIPK3 levels after ICH is tightly relevant to severity, EHG and poor neurological outcomes, assuming that serum RIPK3 may emerge as a valuable prognostic predictor of ICH.


Assuntos
Biomarcadores , Hemorragia Cerebral , Hematoma , Proteína Serina-Treonina Quinases de Interação com Receptores , Humanos , Masculino , Estudos Prospectivos , Feminino , Proteína Serina-Treonina Quinases de Interação com Receptores/sangue , Hemorragia Cerebral/sangue , Hemorragia Cerebral/diagnóstico , Biomarcadores/sangue , Pessoa de Meia-Idade , Idoso , Hematoma/sangue , Hematoma/diagnóstico , Doença Aguda , Estudos de Coortes , Prognóstico
11.
J Agric Food Chem ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847775

RESUMO

Liver inflammation could be elicited by swainsonine in livestock, affecting the development of agriculture and animal husbandry. Our previous study showed an important role of bile acids (BAs) in swainsonine-induced hepatic inflammation. However, its pathogenesis, particularly the roles of a comprehensive profile of liver and serum metabolites and microbial-derived indole metabolites, has not been clarified. This study aimed to demonstrate the mechanisms linking the indole-producing bacteria and indole metabolites to swainsonine-induced hepatic inflammation by combining Targeted 500 metabolomics and quantitative analysis of indole metabolites. Swainsonine significantly disturbed the liver and serum metabolomes in mice. Genus Akkermansia alleviating inflammation and genus Lactobacillus producing indole metabolites were significantly declined. Indole acetic acid (IAA) was the only reduced aryl hydrocarbon receptor (AHR) ligand in this study. Analogously, some bacteria causing liver damage markedly increased. These findings suggested that indole-producing bacteria and indole metabolites may be potential triggers of swainsonine-induced hepatic inflammation.

12.
Biomed Eng Online ; 23(1): 60, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38909231

RESUMO

BACKGROUND: Left ventricular enlargement (LVE) is a common manifestation of cardiac remodeling that is closely associated with cardiac dysfunction, heart failure (HF), and arrhythmias. This study aimed to propose a machine learning (ML)-based strategy to identify LVE in HF patients by means of pulse wave signals. METHOD: We constructed two high-quality pulse wave datasets comprising a non-LVE group and an LVE group based on the 264 HF patients. Fourier series calculations were employed to determine if significant frequency differences existed between the two datasets, thereby ensuring their validity. Then, the ML-based identification was undertaken by means of classification and regression models: a weighted random forest model was employed for binary classification of the datasets, and a densely connected convolutional network was utilized to directly estimate the left ventricular diastolic diameter index (LVDdI) through regression. Finally, the accuracy of the two models was validated by comparing their results with clinical measurements, using accuracy and the area under the receiver operating characteristic curve (AUC-ROC) to assess their capability for identifying LVE patients. RESULTS: The classification model exhibited superior performance with an accuracy of 0.91 and an AUC-ROC of 0.93. The regression model achieved an accuracy of 0.88 and an AUC-ROC of 0.89, indicating that both models can quickly and accurately identify LVE in HF patients. CONCLUSION: The proposed ML methods are verified to achieve effective classification and regression with good performance for identifying LVE in HF patients based on pulse wave signals. This study thus demonstrates the feasibility and potential of the ML-based strategy for clinical practice while offering an effective and robust tool for diagnosing and intervening ventricular remodeling.


Assuntos
Insuficiência Cardíaca , Aprendizado de Máquina , Análise de Onda de Pulso , Humanos , Insuficiência Cardíaca/fisiopatologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Processamento de Sinais Assistido por Computador , Hipertrofia Ventricular Esquerda/fisiopatologia , Hipertrofia Ventricular Esquerda/diagnóstico por imagem
13.
Front Med (Lausanne) ; 11: 1400694, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38933105

RESUMO

Background: Hereditary leiomyomatosis and renal cell cancer (HLRCC) is a rare autosomal dominant inheritable disease caused by Fumarate hydratase (FH) gene germline mutation. It is speculated that for HRLCC infertility women with multiple uterine leiomyomas, preimplantation genetic testing may help block transmission of mutated FH gene during pregnancy. Case presentation: We present the case of a 26-year-old nulligravida with a history of early-onset uterine leiomyomatosis had a heterozygous nonsense mutation [NM_000143.4 (FH): c.1027C > T(p.Arg343Ter)] in the HRLLC gene. After ovulation induction and in vitro fertilization, preimplantation genetic testing for monogenic disorders (PGT-M) on embryos revealed the absence of the pathogenic allele in two blastomeres. Uterine fibroids were identified before embryo transfer, leading to a submucosal myomectomy and long period of pituitary suppression by Gonadotropin-releasing hormone analog (GnRHa). The patient achieved a healthy live birth after the second cycle of frozen-thawed embryo transfer. Conclusion: This case details the successful treatment of an infertile patient with an HRLLC family history, resulting in a healthy birth through myomectomy and PGT-M selected embryo transplantation. Our literature search indicates the first reported live birth after HRLLC-PGT-M.

14.
Infect Drug Resist ; 17: 2485-2499, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38915321

RESUMO

Objective: To preliminarily assess the prevalence and control effect of tuberculosis and drug-resistant tuberculosis (TB) in Anhui province, and analyze the trends in the changing drug resistance spectrum of Mycobacterium tuberculosis (Mtb) isolated in Anhui province from 2016 to 2022. Methods: From 2016 to 2022, a total of 2336 culture-positive tuberculosis strains were collected from four drug resistance monitoring sites. Patient demographic information was collected and drug susceptibility testing was conducted. Results: Among the 2336 Mycobacterium tuberculosis complex strains, 1788 (76.54%) were from male patients and 548 (23.46%) were from female patients. The majority were of Han ethnicity, from rural areas, and employed in agriculture, with 12.54% (285/2273) having diabetes. A total of 1893 (81.04%) strains were sensitive to all six anti-TB drugs tested, and 443 (18.96%) strains were resistant to at least one or more anti-TB drugs. The drug resistance rate for patients undergoing initial treatment was 16.80% (348/2071), and 35.85% (95/265) for those receiving retreatment. Among the six anti-TB drugs, the resistance rates from highest to lowest were: INH (10.55%, 236/2336), SM (8.18%, 183/2336), OFX (6.53%, 146/2336), RFP (5.95%, 133/2336), EMB (2.37%, 53/2336), KM (1.97%, 44/2336). Significant differences were observed in MDR strains across different ages, types, with or without diabetes, and geographical sources (χ2=14.895,76.534,6.032,5.109, all P<0.05). Conclusion: The tuberculosis prevention and control measures have controlled the drug resistance rate of Mycobacterium tuberculosis to a certain extent. However, there are still statistical differences in drug resistance rates among TB patients with different categories, age groups, regions, and diabetic diseases. Early detection and prompt treatment of patients with drug-resistant TB remain critical to controlling the spread of this disease.

15.
Plant Physiol ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917222

RESUMO

Wheat (Triticum aestivum L.) is one of the most important crops worldwide and a major source of human Cd intake. Limiting grain Cd concentration (Gr_Cd_Conc) in wheat is necessary to ensure food safety. However, the genetic factors associated with Cd uptake, translocation, distribution, and Gr_Cd_Conc in wheat are poorly understood. Here, we mapped quantitative trait loci (QTL) for Gr_Cd_Conc and its related transport pathway using a recombinant inbred line (RIL_DT) population derived from two Polish wheat varieties (dwarf Polish wheat [DPW] and tall Polish wheat [TPW]). We identified 29 novel major QTLs for grain and tissue Cd concentration; 14 novel major QTLs for Cd uptake, translocation, and distribution; and 27 major QTLs for agronomic traits. We also analyzed the pleiotropy of these QTLs. Six novel QTLs (QGr_Cd_Conc-1A, QGr_Cd_Conc-3A, QGr_Cd_Conc-4B, QGr_Cd_Conc-5B, QGr_Cd_Conc-6A and QGr_Cd_Conc-7A) for Gr_Cd_Conc explained 8.16-17.02% of the phenotypic variation. QGr_Cd_Conc-3A, QGr_Cd_Conc-6A and QGr_Cd_Conc-7A pleiotropically regulated Cd transport; three other QTLs were organ-specific for Gr_Cd_Conc. We fine-mapped the locus of QGr_Cd_Conc-4B and identified the candidate gene as Cation/Ca exchanger 2 (TpCCX2-4B), which was differentially expressed in DPW and TPW. It encodes an endoplasmic reticulum membrane/plasma membrane-localized Cd efflux transporter in yeast. Overexpression of TpCCX2-4B reduced Gr_Cd_Conc in rice. The average Gr_Cd_Conc was significantly lower in TpCCX2-4BDPW genotypes than in TpCCX2-4BTPWgenotypes of the RIL_DT population and two other natural populations, based on a KASP marker derived from the different promoter sequences between TpCCX2-4BDPW and TpCCX2-4BTPW. Our study reveals the genetic mechanism of Cd accumulation in wheat and provides valuable resources for genetic improvement of low-Cd-accumulating wheat cultivars.

16.
Plants (Basel) ; 13(12)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38931082

RESUMO

Cadmium (Cd) is a naturally occurring toxic heavy metal that adversely affects plant germination, growth, and development. While the effects of Cd have been described on many crop species including rice, maize, wheat and barley, few studies are available on cadmium's effect on Tartary buckwheat which is a traditional grain in China. We examined nine genotypes and found that 30 µM of Cd reduced the root length in seedlings by between 4 and 44% and decreased the total biomass by 7 to 31%, compared with Cd-free controls. We identified a significant genotypic variation in sensitivity to Cd stress. Cd treatment decreased the total root length and the emergence and growth of lateral roots, and these changes were significantly greater in the Cd-sensitive genotypes than in tolerant genotypes. Cd resulted in greater wilting and discoloration in sensitive genotypes than in tolerant genotypes and caused more damage to the structure of root and leaf cells. Cd accumulated in the roots and shoots, but the concentrations in the sensitive genotypes were significantly greater than in the more tolerant genotypes. Cd treatment affected nutrient uptake, and the changes in the sensitive genotypes were greater than those in the tolerant genotypes, which could maintain their concentrations closer to the control levels. The induction of SOD, POD, and CAT activities in the roots and shoots was significantly greater in the tolerant genotypes than in the sensitive genotypes. We demonstrated that Cd stress reduced root and shoot growth, decreased plant biomass, disrupted nutrient uptake, altered cell structure, and managed Cd-induced oxidative stress differently in the sensitive and tolerant genotypes of Tartary buckwheat.

17.
Brain Sci ; 14(6)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928595

RESUMO

This paper proposes a new hybrid model for classifying stress states using EEG signals, combining multi-domain transfer entropy (TrEn) with a two-dimensional PCANet (2D-PCANet) approach. The aim is to create an automated system for identifying stress levels, which is crucial for early intervention and mental health management. A major challenge in this field lies in extracting meaningful emotional information from the complex patterns observed in EEG. Our model addresses this by initially applying independent component analysis (ICA) to purify the EEG signals, enhancing the clarity for further analysis. We then leverage the adaptability of the fractional Fourier transform (FrFT) to represent the EEG data in time, frequency, and time-frequency domains. This multi-domain representation allows for a more nuanced understanding of the brain's activity in response to stress. The subsequent stage involves the deployment of a two-layer 2D-PCANet network designed to autonomously distill EEG features associated with stress. These features are then classified by a support vector machine (SVM) to determine the stress state. Moreover, stress induction and data acquisition experiments are designed. We employed two distinct tasks known to trigger stress responses. Other stress-inducing elements that enhance the stress response were included in the experimental design, such as time limits and performance feedback. The EEG data collected from 15 participants were retained. The proposed algorithm achieves an average accuracy of over 92% on this self-collected dataset, enabling stress state detection under different task-induced conditions.

18.
Heliyon ; 10(11): e31520, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38828336

RESUMO

Angiopoietin-like protein 3 (ANGPTL3) is key in ovarian cancer (OC) cell growth and metastasis, notably by enhancing natural killer cells' capacity for inducing cell toxicity and apoptosis. However, its role in influencing chemotherapy resistance in OC remains ambiguous. In this study, we discovered a correlation between reduced ANGPTL3 levels and a less favorable outcome in OC patients using the Kaplan-Meier Plotter database. Lower levels of ANGPTL3 were detected in paclitaxel (PTX)-resistant OC tissues and cell lines via western blotting and immunohistochemistry. To investigate ANGPTL3's effects, we established SKOV3/PTX and 2780/PTX as PTX-resistant OC cell lines by incrementally increasing PTX exposure and then transfecting them with overexpress ANGPTL3 (OE-ANGPTL3) lentivirus. We conducted various assays such as CCK-8, colony formation, Edu staining, flow cytometry, and transwell to investigate the impact of ANGPTL3 on PTX resistance. Additionally, this effect was examined in a mouse subcutaneous xenograft model. Both in vitro and in vivo experiments demonstrated that ANGPTL3 overexpression mitigated PTX resistance in OC cells by inactivating the PI3K-AKT-mTOR pathway. In summary, our research reveals that ANGPTL3 enhances PTX sensitivity in OC by downregulating the PI3K-AKT-mTOR pathway. The study of this study suggest that ANGPTL3 could serve as a valuable therapeutic target for OC, signifying its clinical relevance in OC management.

19.
Biochem Genet ; 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38850375

RESUMO

The lateral organ boundaries domain (LBD) plays a vital role as a transcriptional coactivator within plants, serving as an indispensable function in growth, development, and stress response. In a previous study, we found that the LBD genes of Pseudoroegneria libanotica (a maternal donor for three-quarter of perennial Triticeae species with good stress resistance, holds great significance in exploring its response mechanisms to abiotic stress for the Triticeae tribe) might be involved in responding to drought stress. Therefore, we further identified the LBD gene family in this study. A total of 29 PseLBDs were identified. Among them, 24 were categorized into subclass I, while 5 fell into subclass II. The identification of cis-acting elements reveals the extensive involvement of PseLBDs in various biological processes in P. libanotica. Collinearity analysis indicates that 86% of PseLBDs were single-copy genes and have undergone a single whole-genome duplication event. Transcriptomic differential expression analysis of PseLBDs under drought stress reveals that the most likely candidates for responding to abiotic stress were PseLBD1 and PseLBD12. They have been demonstrated to respond to drought, salt, heavy metal, and heat stress in yeast. Furthermore, it is plausible that functional divergence might have occurred among their orthologous genes in wheat. This study not only establishes a foundation for a deeper understanding of the biological roles of PseLBDs in P. libanotica but also unveils novel potential genes for enhancing the genetic background of crops within Triticeae crops, such as wheat.

20.
J Thorac Imaging ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38800955

RESUMO

PURPOSE: The aim of this study was to explore the association of cardiac CT-based left atrium (LA) structural and functional parameters and left atrial epicardial adipose tissue (LA-EAT) parameters with postablation atrial fibrillation (AF) recurrence within 2 years. MATERIALS AND METHODS: Contrast-enhanced cardiac CT images of 286 consecutive AF patients (median age: 65 y; 97 females) who underwent initial ablation between June 2018 and June 2020 were retrospectively analyzed. Structural and functional parameters of LA, including maximum and minimum volume and ejection fraction of LA and left atrial appendage (LAA), and LA-EAT volume, were measured. The body surface area indexed maximum and minimum volume of LA (LAVImax, LAVImin) and LAA (LAAVImax, LAAVImin), and LA-EAT volume index (LA-EATVI) were calculated. Independent predictors of AF recurrence were determined using Cox regression analysis. The clinical predictors were added to the imaging predictors to build a combined model (clinical+imaging). The predictive performance of the clinical, imaging, and combined models was assessed using the area under the receiver operating characteristics curve (AUC). RESULTS: A total of 108 (37.8%) patients recurred AF within 2 years after ablation at a median follow-up of 24 months (IQR=11, 32). LA and LAA size and LA-EAT volume were significantly increased in patients with AF recurrence (P<0.05). After the multivariable regression analysis, LA-EATVI, LAAVImax, female sex, AF duration, and stroke history were independent predictors for AF recurrence. The combined model exhibited superior predictive performance compare to the clinical model (AUC=0.712 vs. 0.641, P=0.023) and the imaging model (AUC=0.712 vs. 0.663, P=0.018). CONCLUSION: Cardiac CT-based LA-EATVI and LAAVImax are independent predictors for postablation AF recurrence within 2 years and may provide a complementary value for AF recurrence risk assessment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA