Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
BMC Vet Res ; 20(1): 252, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851737

RESUMO

BACKGROUND: The insulin/insulin-like signalling (IIS) pathway is common in mammals and invertebrates, and the IIS pathway is unknown in Fasciola gigantica. In the present study, the IIS pathway was reconstructed in F. gigantica. We defined the components involved in the IIS pathway and investigated the transcription profiles of these genes for all developmental stages of F. gigantica. In addition, the presence of these components in excretory and secretory products (ESPs) was predicted via signal peptide annotation. RESULTS: The core components of the IIS pathway were detected in F. gigantica. Among these proteins, one ligand (FgILP) and one insulin-like molecule binding protein (FgIGFBP) were analysed. Interestingly, three receptors (FgIR-1/FgIR-2/FgIR-3) were detected, and a novel receptor, FgIR-3, was screened, suggesting novel functions. Fg14-3-3ζ, Fgirs, and Fgpp2a exhibited increased transcription in 42-day-old juveniles and 70-day-old juveniles, while Fgilp, Fgigfb, Fgsgk-1, Fgakt-1, Fgir-3, Fgpten, and Fgaap-1 exhibited increased transcription in metacercariae. FgILP, FgIGFBP, FgIR-2, FgIR-3, and two transcription factors (FgHSF-1 and FgSKN-1) were predicted to be present in FgESPs, indicating their exogenous roles. CONCLUSIONS: This study helps to elucidate the signal transduction pathway of IIS in F. gigantica, which will aid in understanding the interaction between flukes and hosts, as well as in understanding fluke developmental regulation, and will also lay a foundation for further characterisation of the IIS pathways of trematodes.


Assuntos
Fasciola , Proteínas de Helminto , Insulina , Transdução de Sinais , Animais , Fasciola/genética , Fasciola/metabolismo , Insulina/metabolismo , Proteínas de Helminto/metabolismo , Proteínas de Helminto/genética
2.
Small Methods ; : e2301531, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308413

RESUMO

Hole-transporting layer-free carbon-based perovskite solar cells (HTL-free C-PSCs) hold great promise for photovoltaic applications due to their low cost and outstanding stability. However, the low power conversion efficiency (PCE) of HTL-free C-PSCs mainly results from grain boundaries (GBs). Here, epitaxial growth is proposed to rationally design a hybrid nanostructure of PbI2 nanosheets/perovskite with the desired photovoltaic properties. A post-treatment technique using tri(2,2,2-trifluoromethyl) phosphate (TFEP) to induce in situ epitaxial growth of PbI2 nanosheets at the GBs of perovskite films realizes high-performance HTL-free C-PSCs. The structure model and high-resolution transmission electron microscope unravel the epitaxial growth mechanism. The epitaxial growth of oriented PbI2 nanosheets generates the PbI2 /perovskite heterojunction, which not only passivates defects but forms type-I band alignment, avoiding carrier loss. Additionally, Fourier-transform infrared spectroscopy, 31 P NMR, and 1 H NMR spectra reveal the passivation effect and hydrogen bonding interaction between TFEP and perovskite. As a result, the VOC is remarkably boosted from 1.04 to 1.10 V, leading to a substantial gain in PCE from 14.97% to 17.78%. In addition, the unencapsulated PSC maintains the initial PCE of 80.1% for 1440 h under air ambient of 40% RH. The work offers a fresh perspective on the rational design of high-performance HTL-free C-PSCs.

3.
Small ; 20(21): e2308783, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105423

RESUMO

The low power conversion efficiency (PCE) of hole transport materials (HTM) - free carbon-based perovskite solar cells (C-PSCs) poses a challenge. Here, a novel 2D Eu-TCPP MOF (TCPP; [tetrakis (4-carboxyphenyl) porphyrin]) sandwiched between the perovskite layer and the carbon electrode is used to realize an effective and stable HTM-free C-PSCs. Relying on the synergistic effect of both the metal-free TCPP ligand with a unique absorption spectrum and hydrophobicity and the EuO4(OH)2 chain in the Eu-TCPP MOF, defects are remarkably suppressed and light-harvesting capability is significantly boosted. Energy band alignment is achieved after Eu-TCPP MOF treatment, promoting hole collection. Förster resonance energy transfer results in improved light utilization and protects the perovskite from decomposition. As a result, the HTM-free C-PSCs with Eu-TCPP MOF reach a champion PCE of 18.13%. In addition, the unencapsulated device demonstrates outstanding thermal stability and UV resistance and keeps 80.6% of its initial PCE after 5500 h in a high-humidity environment (65%-85% RH).

4.
Parasitol Res ; 123(1): 51, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095703

RESUMO

In the present study, we reconstructed the transforming growth factor beta (TGF-ß) signaling pathway for Fasciola gigantica, which is a neglected tropical pathogen. We defined the components involved in the TGF-ß signaling pathway and investigated the transcription profiles of these genes for all developmental stages of F. gigantica. In addition, the presence of these components in excretory and secretory products (FgESP) was predicted via signal peptide annotation. The core components of the TGF-ß signaling pathway have been detected in F. gigantica; classical and nonclassical single transduction pathways were constructed. Four ligands have been detected, which may mediate the TGF-ß signaling pathway and BMP signaling pathway. Two ligand-binding type II receptors were detected, and inhibitory Smad7 was not detected. TLP, BMP-3, BMP-1, and ActRIb showed higher transcription in 42-day juvenile and 70-day juvenile, while ActRIIa, Smad1, ActRIIb, Smad8, KAT2B, and PP2A showed higher transcription in egg. TLM, Ski, Smad6, BMPRI, p70S6K, Smad2, Smad3, TgfßRI, Smad4, and p300 showed higher transcription in metacercariae. Four ligands, 2 receptors and 3 Smads are predicted to be present in the FgESP, suggesting their potential extrinsic function. This study should help to understand signal transduction in the TGF-ß signaling pathway in F. gigantica. In addition, this study helps to illustrate the complex mechanisms involved in developmental processes and F. gigantica - host interaction and paves the way for further characterization of the signaling pathway in trematodes.


Assuntos
Fasciola , Animais , Fasciola/genética , Fasciola/metabolismo , Fator de Crescimento Transformador beta/genética , Transdução de Sinais
5.
Part Fibre Toxicol ; 20(1): 18, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147710

RESUMO

BACKGROUND: Prussian blue (PB) nanoparticles (NPs) have been intensively investigated for medical applications, but an in-depth toxicological investigation of PB NPs has not been implemented. In the present study, a comprehensive investigation of the fate and risks of PB NPs after intravenous administration was carried out by using a mouse model and an integrated methodology of pharmacokinetics, toxicology, proteomics, and metabolomics. RESULTS: General toxicological studies demonstrated that intravenous administration of PB NPs at 5 or 10 mg/kg could not induce obvious toxicity in mice, while mice treated with a relatively high dose of PB NPs at 20 mg/kg exhibited loss of appetite and weight decrease in the first two days postinjection. Pharmacokinetic studies revealed that intravenously administered PB NPs (20 mg/kg) underwent fast clearance from blood, highly accumulated in the liver and lungs of mice, and finally cleared from tissues. By further integrated proteomics and metabolomics analysis, we found that protein expression and metabolite levels changed significantly in the liver and lungs of mice due to the high accumulation of PB NPs, leading to slight inflammatory responses and intracellular oxidative stress. CONCLUSIONS: Collectively, our integrated experimental data imply that the high accumulation of PB NPs may cause potential risks to the liver and lungs of mice, which will provide detailed references and guidance for further clinical application of PB NPs in the future.


Assuntos
Ferrocianetos , Nanopartículas , Ferrocianetos/administração & dosagem , Ferrocianetos/uso terapêutico , Ferrocianetos/toxicidade , Nanopartículas/administração & dosagem , Nanopartículas/uso terapêutico , Nanopartículas/toxicidade , Estresse Oxidativo , Proteômica
6.
Sci Data ; 9(1): 359, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732656

RESUMO

The electric grid is a key enabling infrastructure for the ambitious transition towards carbon neutrality as we grapple with climate change. With deepening penetration of renewable resources, the reliable operation of the electric grid becomes increasingly challenging. In this paper, we present PSML, a first-of-its-kind open-access multi-scale time-series dataset, to aid in the development of data-driven machine learning (ML)-based approaches towards reliable operation of future electric grids. The dataset is synthesized from a joint transmission and distribution electric grid to capture the increasingly important interactions and uncertainties of the grid dynamics, containing power, voltage and current measurements over multiple spatio-temporal scales. Using PSML, we provide state-of-the-art ML benchmarks on three challenging use cases of critical importance to achieve: (i) early detection, accurate classification and localization of dynamic disturbances; (ii) robust hierarchical forecasting of load and renewable energy; and (iii) realistic synthetic generation of physical-law-constrained measurements. We envision that this dataset will provide use-inspired ML research in safety-critical systems, while simultaneously enabling ML researchers to contribute towards decarbonization of energy sectors.

7.
Joule ; 4(11): 2322-2337, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33015556

RESUMO

The novel coronavirus disease (COVID-19) has rapidly spread around the globe in 2020, with the US becoming the epicenter of COVID-19 cases since late March. As the US begins to gradually resume economic activity, it is imperative for policymakers and power system operators to take a scientific approach to understanding and predicting the impact on the electricity sector. Here, we release a first-of-its-kind cross-domain open-access data hub, integrating data from across all existing US wholesale electricity markets with COVID-19 case, weather, mobile device location, and satellite imaging data. Leveraging cross-domain insights from public health and mobility data, we rigorously uncover a significant reduction in electricity consumption that is strongly correlated with the number of COVID-19 cases, degree of social distancing, and level of commercial activity.

8.
Theranostics ; 9(13): 3966-3979, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31281525

RESUMO

Chemotherapy is widely used in combination with high-intensity focused ultrasound (HIFU) ablation for cancer therapy; however, the spatial and temporal integration of chemotherapy and HIFU ablation remains a challenge. Here, temperature-sensitive plateletsomes (TSPs) composed of platelet (PLT) membrane, 1-stearoyl-2-hydroxy-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine were developed to adequately integrate chemotherapy with HIFU tumor ablation in vivo. Methods: The thermosensitive permeability of TSPs was evaluated under both water bath heating and HIFU hyperthermia. The targeting performance, pharmacokinetic behavior and therapeutic potential of TSPs in combination with HIFU ablation were evaluated using HeLa cells and a HeLa cell tumor-bearing nude mouse model in comparison with temperature-sensitive liposomes (TSLs). Results: TSPs showed high drug loading efficiency and temperature-sensitive permeability. When applied in vivo, TSPs showed a circulation lifetime comparable to that of TSLs and exhibited PLT-specific cancer cell affinity and a vascular damage response. Upon HIFU hyperthermia, TSPs displayed ultrafast drug release and enhanced tumor uptake, providing high drug availability in the tumor site to cooperate with HIFU ablation. After HIFU ablation, TSPs rapidly targeted the postoperative tumor site by adhesion to the damaged tumor vasculature, leading to targeted and localized postoperative chemotherapy. Conclusion: Due to effective integration at both intraoperative and postoperative stages, TSPs could be a promising chemotherapy nanoplatform in combination with HIFU ablation for cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Plaquetas/metabolismo , Ablação por Ultrassom Focalizado de Alta Intensidade , Neoplasias/terapia , Temperatura , Animais , Antineoplásicos/farmacologia , Circulação Sanguínea/efeitos dos fármacos , Plaquetas/efeitos dos fármacos , Plaquetas/ultraestrutura , Varredura Diferencial de Calorimetria , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Citocinas/sangue , Composição de Medicamentos , Liberação Controlada de Fármacos , Células HeLa , Humanos , Inflamação/patologia , Concentração Inibidora 50 , Lipossomos , Camundongos , Neoplasias/patologia , Distribuição Tecidual/efeitos dos fármacos
9.
Theranostics ; 8(10): 2683-2695, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29774068

RESUMO

Multidrug resistance (MDR) poses a great challenge to cancer therapy. It is difficult to inhibit the growth of MDR cancer due to its chemoresistance. Furthermore, MDR cancers are more likely to metastasize, causing a high mortality among cancer patients. In this study, a nanomedicine RGD-NPVs@MNPs/DOX was developed by encapsulating melanin nanoparticles (MNPs) and doxorubicin (DOX) inside RGD peptide (c(RGDyC))-modified nanoscale platelet vesicles (RGD-NPVs) to efficiently inhibit the growth and metastasis of drug-resistant tumors via a cancer cells and tumor vasculature dual-targeting strategy. Methods: The in vitro immune evasion potential and the targeting performance of RGD-NPVs@MNPs/DOX were examined using RAW264.7, HUVECs, MDA-MB-231 and MDA-MB-231/ADR cells lines. We also evaluated the pharmacokinetic behavior and the in vivo therapeutic performance of RGD-NPVs@MNPs/DOX using a MDA-MB-231/ADR tumor-bearing nude mouse model. Results: By taking advantage of the self-recognizing property of the platelet membrane and the conjugated RGD peptides, RGD-NPVs@MNPs/DOX was found to evade immune clearance and target the αvß3 integrin on tumor vasculature and resistant breast tumor cells. Under irradiation with a NIR laser, RGD-NPVs@MNPs/DOX produced a multipronged effect, including reversal of cancer MDR, efficient killing of resistant cells by chemo-photothermal therapy, elimination of tumor vasculature for blocking metastasis, and long-lasting inhibition of the expressions of VEGF, MMP2 and MMP9 within the tumor. Conclusion: This versatile nanomedicine of RGD-NPVs@MNPs/DOX integrating unique biomimetic properties, excellent targeting performance, and comprehensive therapeutic strategies in one formulation might bring opportunities to MDR cancer therapy.


Assuntos
Inibidores da Angiogênese/administração & dosagem , Plaquetas/citologia , Resistencia a Medicamentos Antineoplásicos , Nanopartículas/química , Neoplasias Experimentais/tratamento farmacológico , Neovascularização Patológica/tratamento farmacológico , Inibidores da Angiogênese/uso terapêutico , Animais , Linhagem Celular , Linhagem Celular Tumoral , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Melaninas/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/metabolismo , Metástase Neoplásica , Neoplasias Experimentais/patologia , Oligopeptídeos/química , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA