Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nanotechnology ; 35(32)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38688249

RESUMO

Dealing with bone defects is a significant challenge to global health. Electrospinning in bone tissue engineering has emerged as a solution to this problem. In this study, we designed a PVDF-b-PTFE block copolymer by incorporating TFE, which induced a phase shift in PVDF fromαtoß, thereby enhancing the piezoelectric effect. Utilizing the electrospinning process, we not only converted the material into a film with a significant surface area and high porosity but also intensified the piezoelectric effect. Then we used polydopamine to immobilize BMP-2 onto PVDF-b-PTFE electrospun nanofibrous membranes, achieving a controlled release of BMP-2. The scaffold's characters were examined using SEM and XRD. To assess its osteogenic effectsin vitro, we monitored the proliferation of MC3T3-E1 cells on the fibers, conducted ARS staining, and measured the expression of osteogenic genes.In vivo, bone regeneration effects were analyzed through micro-CT scanning and HE staining. ELISA assays confirmed that the sustained release of BMP-2 can be maintained for at least 28 d. SEM images and CCK-8 results demonstrated enhanced cell viability and improved adhesion in the experimental group. Furthermore, the experimental group exhibited more calcium nodules and higher expression levels of osteogenic genes, including COL-I, OCN, and RUNX2. HE staining and micro-CT scans revealed enhanced bone tissue regeneration in the defective area of the PDB group. Through extensive experimentation, we evaluated the scaffold's effectiveness in augmenting osteoblast proliferation and differentiation. This study emphasized the potential of piezoelectric PVDF-b-PTFE nanofibrous membranes with controlled BMP-2 release as a promising approach for bone tissue engineering, providing a viable solution for addressing bone defects.


Assuntos
Proteína Morfogenética Óssea 2 , Regeneração Óssea , Indóis , Nanofibras , Osteogênese , Polímeros , Engenharia Tecidual , Alicerces Teciduais , Proteína Morfogenética Óssea 2/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Nanofibras/química , Regeneração Óssea/efeitos dos fármacos , Animais , Camundongos , Indóis/química , Indóis/farmacologia , Polímeros/química , Polímeros/farmacologia , Engenharia Tecidual/métodos , Osteogênese/efeitos dos fármacos , Alicerces Teciduais/química , Proliferação de Células/efeitos dos fármacos , Linhagem Celular , Proteínas Imobilizadas/farmacologia , Proteínas Imobilizadas/química , Sobrevivência Celular/efeitos dos fármacos
2.
Small ; : e2309038, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456768

RESUMO

Adoptive cellular therapy is a promising strategy for cancer treatment. However, the effectiveness of this therapy is limited by its intricate and immunosuppressive tumor microenvironment. In this study, a targeted therapeutic strategy for macrophage loading of drugs is presented to enhance anti-tumor efficacy of macrophages. K7M2-target peptide (KTP) is used to modify macrophages to enhance their affinity for tumors. Pexidartinib-loaded ZIF-8 nanoparticles (P@ZIF-8) are loaded into macrophages to synergistically alleviate the immunosuppressive tumor microenvironment synergistically. Thus, the M1 macrophages decorated with KTP carried P@ZIF-8 and are named P@ZIF/M1-KTP. The tumor volumes in the P@ZIF/M1-KTP group are significantly smaller than those in the other groups, indicating that P@ZIF/M1-KTP exhibited enhanced anti-tumor efficacy. Mechanistically, an increased ratio of CD4+ T cells and a decreased ratio of MDSCs in the tumor tissues after treatment with P@ZIF/M1-KTP indicated that it can alleviate the immunosuppressive tumor microenvironment. RNA-seq further confirms the enhanced immune cell function. Consequently, P@ZIF/M1-KTP has great potential as a novel adoptive cellular therapeutic strategy for tumors.

3.
Phytomedicine ; 126: 155459, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38417243

RESUMO

BACKGROUND: Osteosarcoma is the most prevalent malignant bone tumour with a poor prognosis. Shikonin (SHK) is derived from the traditional Chinese medicine Lithospermum that has been extensively studied for its notable anti-tumour effects, including for osteosarcoma. However, its application has certain limitations. Valproic acid (VPA) is a histone deacetylase inhibitor (HDACI) that has recently been employed as an adjunctive therapeutic agent that allows chromatin to assume a more relaxed state, thereby enhancing anti-tumour efficacy. PURPOSE: This study was aimed to investigate the synergistic anti-tumour efficacy of SHK in combination with VPA and elucidate its underlying mechanism. METHODS/STUDY DESIGN: CCK-8 assays were utilized to calculate the combination index. Additional assays, including colony formation, acridine orange/ethidium bromide double fluorescent staining, and flow cytometry, were employed to evaluate the effects on osteosarcoma cells. Wound healing and transwell assays were utilized to assess cell mobility. RNA sequencing, PCR, and Western blot analyses were conducted to uncover the underlying mechanism. Rescue experiments were performed to validate the mechanism of apoptotic induction. The impact of SHK and VPA combination treatment on primary osteosarcoma cells was also assessed. Finally, in vivo experiments were conducted to validate its anti-tumour effects and mechanism. RESULTS: The combination of SHK and VPA synergistically inhibited the proliferation and migration of osteosarcoma cells in vitro and induced apoptosis in these cells. Through a comprehensive analysis involving RNA sequencing, PCR, Western blot, and rescue experiments, we have substantiated our hypothesis that the combination of SHK and VPA induced apoptosis via the ROS-EGR1-Bax axis. Importantly, our in vivo experiments corroborated these findings, demonstrating the potential of the SHK and VPA combination as a promising therapeutic approach for osteosarcoma. CONCLUSION: The combination of SHK and VPA exerted an anti-tumour effect by inducing apoptosis through the ROS-EGR1-Bax pathway. Repurposing the old drug VPA demonstrated its effectiveness as an adjunctive therapeutic agent for SHK, enhancing its anti-tumour efficacy and revealing its potential value. Furthermore, our study expanded the application of natural compounds in the anti-tumour field and overcame some of their limitations through combination therapy. Finally, we enhanced the understanding of the mechanistic pathways linking reactive oxygen species (ROS) accumulation and apoptosis in osteosarcoma cells. Additionally, we elucidated the role of EGR1 in osteosarcoma cells, offering novel strategies and concepts for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Naftoquinonas , Osteossarcoma , Humanos , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Proteína X Associada a bcl-2 , Apoptose , Osteossarcoma/patologia , Linhagem Celular Tumoral , Neoplasias Ósseas/metabolismo , Proliferação de Células , Proteína 1 de Resposta de Crescimento Precoce/farmacologia
4.
Int J Biol Macromol ; 258(Pt 2): 128864, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158059

RESUMO

Starch a natural polymer, has made significant advancements in recent decades, offering superior performance and versatility compared to synthetic materials. This review discusses up-to-date diverse applications of starch gels, their fabrication techniques, and their advantages over synthetic materials. Starch gels renewability, biocompatibility, biodegradability, scalability, and affordability make them attractive. Also, advanced theoretical foundations and emerging industrial technologies could further expand their scope and functions inspiring new applications.


Assuntos
Indústrias , Amido , Géis
5.
J Orthop Translat ; 39: 63-73, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37188000

RESUMO

Tendon-bone insertion injuries (TBI), such as anterior cruciate ligament (ACL) and rotator cuff injuries, are common degenerative or traumatic pathologies with a negative impact on the patient's daily life, and they cause huge economic losses every year. The healing process after an injury is complex and is dependent on the surrounding environment. Macrophages accumulate during the entire process of tendon and bone healing and their phenotypes progressively transform as they regenerate. As the "sensor and switch of the immune system", mesenchymal stem cells (MSCs) respond to the inflammatory environment and exert immunomodulatory effects during the tendon-bone healing process. When exposed to appropriate stimuli, they can differentiate into different tissues, including chondrocytes, osteocytes, and epithelial cells, promoting reconstruction of the complex transitional structure of the enthesis. It is well known that MSCs and macrophages communicate with each other during tissue repair. In this review, we discuss the roles of macrophages and MSCs in TBI injury and healing. Reciprocal interactions between MSCs and macrophages and some biological processes utilizing their mutual relations in tendon-bone healing are also described. Additionally, we discuss the limitations in our understanding of tendon-bone healing and propose feasible ways to exploit MSC-macrophage interplay to develop an effective therapeutic strategy for TBI injuries. The Translational potential of this article: This paper reviewed the important functions of macrophages and mesenchymal stem cells in tendon-bone healing and described the reciprocal interactions between them during the healing process. By managing macrophage phenotypes, mesenchymal stem cells and the interactions between them, some possible novel therapies for tendon-bone injury may be proposed to promote tendon-bone healing after restoration surgery.

6.
Chin J Traumatol ; 26(3): 178-182, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36941178

RESUMO

PURPOSE: Static progressive stretch (SPS) can be applied to treat chronic joint stiffness. However, the impacts of subacute application of SPS to the distal lower limbs, where deep vein thrombosis (DVT) is common, on venous thromboembolism remain unclear. This study aims to explore the risk of venous thromboembolism events following subacute application of SPS. METHODS: A retrospective cohort study was conducted on patients diagnosed with DVT following a lower extremity orthopedic surgery before being transferred to the rehabilitation ward from May 2017 to May 2022. Patients with unilateral lower limb comminuted para-articular fractures, transferred to rehabilitation ward for further treatment within 3 weeks after operation, followed up more than 12 weeks since initial manual physiotherapy, and diagnosed DVT by ultrasound before rehabilitation course were included in the study. Patients with polytrauma, without evidence of previous peripheral vascular disease or incompetence, had medication for thrombosis treatment or prophylaxis before the operation, detected with paralysis due to nervous system impairment, infected after operation during the regime, or with acute progression of DVT were excluded. The included patients were randomized to the standard physiotherapy and the SPS integrated groups for observation. Associated DVT and pulmonary embolism data were collected during the physiotherapy course to compare the groups. SSPS 28.0 and GraphPad Prism 9 were used for data processing. A p < 0.05 was set significant difference. RESULTS: In total of 154 patients with DVT participating in this study, 75 of them were treated with additional SPS for postoperative rehabilitation. The participants in the SPS group showed improved range of motion (12.3° ± 6.7°). However, in the SPS group, there was no difference in thrombosis volume between the start and termination (p = 0.106, p = 0.787, respectively), although difference was seen intra-therapy (p < 0.001). Contingency analysis revealed the pulmonary embolism incidence (OR = 0.703) in the SPS group compared to the mean physiotherapy. CONCLUSION: The SPS technique is a safe and reliable option to prevent potential joint stiffness without aggravating the risk of distal DVT for postoperative patients suffering from relevant trauma.


Assuntos
Embolia Pulmonar , Tromboembolia Venosa , Trombose Venosa , Humanos , Tromboembolia Venosa/epidemiologia , Tromboembolia Venosa/etiologia , Tromboembolia Venosa/prevenção & controle , Trombose Venosa/epidemiologia , Trombose Venosa/etiologia , Estudos Retrospectivos , Embolia Pulmonar/etiologia , Embolia Pulmonar/complicações , Extremidade Inferior , Fatores de Risco
7.
Front Immunol ; 14: 1114596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969204

RESUMO

With the aging of many populations, cognitive and motor dysfunction caused by ischemic stroke (IS) secondary to long-term chronic cerebral ischemia presents a global problem. Enriched environment (EE), a classic paradigm of environment response and genetic interaction, has shown tremendous influence on the brain. This research aimed to investigate the potential effect of EE on cognitive and motor function in mice with chronic cerebral ischemia and secondary IS. In the chronic cerebral hypoperfusion (CCH) phase, EE treatment improved behavior performance by alleviating neuronal loss and white matter myelin damage, promoting the expression of brain-derived neurotrophic factor (BDNF) and phosphor-cAMP response element binding protein (p-CREB). Furthermore, infiltration of microglia/macrophages and astrocytes was inhibited, and the levels of IL-1ß and TNFα were decreased. In the IS phase, EE altered the neuronal outcome on day 21 but not on day one after IS. In addition, EE inhibited IS-induced infiltration of microglia/macrophages and astrocytes, mediated the polarization of microglia/macrophages, and reduced pro-inflammatory factors. Importantly, EE improved IS-induced cognitive and motor deficits on day 21. Collectively, our work demonstrates that EE protects mice from cognitive and motor dysfunction and inhibits neuroinflammation caused by CCH and IS.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Camundongos , Animais , Encéfalo , Isquemia/complicações , Prognóstico
8.
Food Chem ; 404(Pt B): 134549, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36283307

RESUMO

Enzymatic browning has been a significant factor affecting the sale of fresh noodles. This study used a combination of physical and chemical methods to achieve a long-lasting and effective anti-browning effect in fresh noodles. The results showed that the combinations of citric acid (CA), NaOH, and KOH with heat treatment blunted the polyphenol oxidase activity and improved the color of fresh noodles. Specifically, the L* value of fresh noodles stored at 6 °C treated by the combination of CA and 75 °C (CHFN-75) at 72 h (81.71) was significantly higher than that of the control at 72 h (74.42). Mixolab and confocal laser scanning microscopy showed that the combined treatment affected the protein and starch of the flour. However, the hardness and chewiness of the cooked noodles increased only slightly, and the adhesiveness decreased slightly. The innovative combination can be used as an effective way to delay the darkening of fresh noodles.


Assuntos
Temperatura Alta , Triticum , Farinha/análise , Culinária , Amido
9.
Food Chem ; 400: 133950, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36055137

RESUMO

Effect of soluble soybean polysaccharides (SSPS) and acidic condition on the bread staling of crumb and crust were evaluated in bread characteristics, water migration, starch retrogradation, and flavor. Bread characteristic analysis showed SSPS and acidic conditions significantly improved bread quality during storage, maintaining crumb softness. The staling rate of the synergistic group under SSPS and acidic condition decreased by 49.46% compared to the control group. This retardation was associated with water migration and starch retrogradation. SSPS and acidic conditions restricted the water migration from crumb to crust. A synergy between SSPS and acidification restrained the relative crystallinity and retrogradation enthalpy in bread crumbs and crust during storage. The scores plot and heat map analysis indicated SSPS and acidic condition was facilitated the flavors retention in the crumb and crust after stored 7-days. This study suggested SSPS and acidic conditions might be beneficial for extending bread shelf-life.


Assuntos
Pão , Glycine max , Amido , Triticum , Água
10.
Biomed Mater ; 17(4)2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35748526

RESUMO

Titanium dioxide (TiO2), as one of the titanium (Ti)-based implants, holds a promise for a variety of anti-bacterial application in medical research. In the current study, a functional molybdenum disulfide (MoS2)/polydopamine (PDA)-LL-37 coating on titanium dioxide (TiO2) implant was prepared. Anodic oxidation and hydrothermal treatment was given to prepare TiO2nanotubes-MoS2/PDA-LL-37 (T-M/P-L). Thein vitroosteogenic effect of T-M/P-L was evaluated by measuring mesenchymal stem cell (MSC) adhesion, proliferation, alkaline phosphatase (ALP) activity, extracellular matrix (ECM) mineralization, collagen secretion and osteoblast-specific messenger RNAs (mRNAs) expression. The determination on the anti-bacterial ability of T-M/P-L was followed. Furthermore, the ability of T-M/P-L to promote bone formationin vivowas evaluated. Near-infrared (NIR) laser irradiation exposure enabled the T-M/P-L coating-endowed Ti substrates to hold effective anti-bacterial ability. T-M/P-L promoted the adhesion and proliferation of MSCs. In addition, an increase was witnessed regarding the ALP activity, collagen secretion and ECM mineralization, along with the expression of runt-related transcription factor 2, ALP and osteocalcin in the presence of T-M/P-L. Additionally, T-M/P-L could stimulate endothelial cells to secrete vascular endothelial growth factor (VEGF) and promote capillary-like tubule formation. Upon NIR laser irradiation exposure, T-M/P-L not only exhibited efficientin vivoanti-bacterial activity but also facilitated new bone formation. Collectively, T-M/P-L had enhanced anti-bacterial and osteogenic activity under NIR laser irradiation.


Assuntos
Nanotubos , Osteogênese , Diferenciação Celular , Colágeno/metabolismo , Células Endoteliais , Indóis , Raios Infravermelhos , Lasers , Molibdênio/metabolismo , Molibdênio/farmacologia , Osteoblastos/metabolismo , Polímeros , Titânio/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Int J Biol Macromol ; 212: 517-526, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35623461

RESUMO

The effects of starch and gluten on the physicochemical properties of frozen dough were studied using reconstituted flour. The profiles of frozen dough were studied by Mixolab, rheometer, scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FTIR). Results revealed that starch, rather than gluten, played a decisive role in mixing properties. The breakdown and aggregation of the gluten network structure as well as the formation of ß-turns and ß-sheets in the frozen dough would be aggravated by the freezing of wheat starch. Smaller wheat starch granules (B-Type granules) affected the secondary structure of gluten network more than larger granules (A-Type granules), resulting in greater rheological property changes. The viscoelastic properties and freezable water content of frozen dough were more influenced by the freezing of gluten.


Assuntos
Glutens , Triticum , Pão , Farinha , Congelamento , Glutens/química , Reologia , Amido/química , Triticum/química
12.
Micromachines (Basel) ; 13(4)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35457924

RESUMO

Simulation technology is widely used in computer-aided process planning (CAPP). The part machining process is simulated in the virtual world, which can predict manufacturing errors and optimize the process plan. Simulation accuracy is the guarantee of process decision-making and optimization. This article focuses on the use of digital twin technology to build a high-fidelity process model, taking the advantage of the integration of multiple systems, in order to achieve the dynamic association of real-time manufacturing data and process models. Making use of the CAPP/MES systems, the surface inspection data of the part is fed back to the CAPP system and associated with the digital twin process model. The wavelet transform method is used to reduce the noise of the high-frequency signal of the detection data, and the signal-to-noise ratio (SNR) is calculated to verify the noise reduction effect. The surface topography, after noise reduction, was reconstructed in Matlab. On this basis, the Poisson reconstruction algorithm is used to reconstruct the high-fidelity process model for the refined simulation of the subsequent processes. Finally, by comparing the two sets of simulation experiments with the real machining results, we found that the simulation results, based on the digital twin model, are more accurate than the traditional simulation method by 58%.

13.
Transl Res ; 247: 99-116, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35470010

RESUMO

Diabetic nephropathy (DN) is one of the most serious complications of advanced diabetes, and increases patient mortality. Recently, epigenetics-mediated hyperglycemic memory in pathological process of DN has received attention. The purpose of this study was to determine the underlying mechanism by which sirt7 modulates hyperglycemic memory in DN. In glomerular endothelial cells (GECs) cultured in high glucose and glomeruli of DN patients and rats, an increase in p65 phosphorylation and endothelial adhesion molecule levels persisted after glucose normalization but was reversed by glucose normalization associated with death-associated protein kinase-3 (DAPK3) knockout or DAPK3 inhibitor. High glucose-mediated decrease in sirt7, the deacetylase modulating H3K18-acetylation (H3K18ac), was sustained after normoglycemia. Sirt7 overexpression accompanied by glucose normalization suppressed DAPK3 expression and inflammation in GECs. Moreover, sh-sirt7-induced inflammation was inhibited by si-DAPK3. Furthermore, sirt7 and H3K18ac were located at the DAPK3 promoter region. ELK1 was found to combine with sirt7. si-ELK1 supplemented with normoglycemia inhibited high glucose-induced DAPK3 expression and inflammation in GECs. ELK1 overexpression-mediated inflammation was inhibited by si-DAPK3. In addition, ELK1 and sirt7 were located at the same promoter region of DAPK3. ELK1 overexpression enhanced DAPK3 promoter activity, which disappeared after specific binding site mutation. In vivo, sirt7 overexpression decreased inflammation and improved renal function during insulin treatment of DN rats, whereas insulin alone did not work. Our data demonstrated high glucose-mediated mutual inhibition between sirt7 and ELK1 induced DAPK3 transcription and inflammation despite normoglycemia in GECs, thus forming a vicious cycle and participating in the occurrence of hyperglycemic memory in DN.


Assuntos
Proteínas Quinases Associadas com Morte Celular , Nefropatias Diabéticas , Hiperglicemia , Sirtuínas , Proteínas Elk-1 do Domínio ets , Animais , Proteínas Quinases Associadas com Morte Celular/genética , Proteínas Quinases Associadas com Morte Celular/metabolismo , Diabetes Mellitus , Células Endoteliais/metabolismo , Glucose/farmacologia , Humanos , Hiperglicemia/complicações , Hiperglicemia/patologia , Inflamação , Insulinas , Ratos , Sirtuínas/genética , Sirtuínas/metabolismo , Proteínas Elk-1 do Domínio ets/genética , Proteínas Elk-1 do Domínio ets/metabolismo
14.
Food Res Int ; 155: 111078, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35400455

RESUMO

The aim of this study was to scientifically investigate the impact of optimal-water boiling cooking on the volatile profile of 26 japonica rice varieties. A modified direct solvent extraction combined with gas chromatography-mass spectrometry was applied to analyze the volatiles in raw and cooked samples. 2-Acetyl-1-pyrroline (2AP) was only detected in aromatic varieties and decreased after cooking (-81.94% - -43.97%). Great losses of esters and long-chain ketones were exhibited after cooking. Cooking accelerated lipid oxidation and degradation of phenolic acids, thus volatiles originate from lipid oxidation and several benzenoid compounds showed increase trends in majority of the samples. Increases of 3 saturated aldehydes including hexanal (48.01% - 306.02%), octanal and nonanal (67.03% - 544.15%) could be observed in all samples. Acetophenone, 2-methoxy-4-vinylphenol (11.95% - 297.61%) and vanillin (14.29% - 319.25%) were also enhanced upon cooking. Correlations existed in volatiles with common precursors or involved in same pathways. According to multivariate and univariate statistical analysis, 18 volatiles most greatly influenced by cooking were selected. This study will facilitate the aroma improvement of cooked rice in the future.


Assuntos
Oryza , Compostos Orgânicos Voláteis , Culinária , Lipídeos/análise , Oryza/química , Compostos Orgânicos Voláteis/análise , Água
15.
Food Chem ; 385: 132701, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35320761

RESUMO

Japonica rice is widely planted in different regions of China. Rice of different geographical origins may have substantially different economic values. In this study, An untargeted metabolomics based approach using headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry (HS-SPME/GC-MS) was applied to distinguish 27 japonica rice varieties originated from South, Northern and Northeastern China in raw and cooked form, respectively. Orthogonal partial least-squares discriminant analysis (OPLS-DA) models exhibited good geographic discrimination. Sixteen and twenty-two volatiles were selected as the discriminant markers in raw and cooked rice, respectively. However, only hexanal, 3,5-octadien-2-one and 2-butyl-2-octenal were selected both in raw and cooked rice. Markers in raw rice mainly involved in terpenes, lipoxygenases, indole, and shikimate and benzoic acid pathways. Markers in cooked rice were mainly derived from lipid oxidation. The results provided a deeper understanding of volatiles variation of rice in China from different geographic origins.


Assuntos
Oryza , Compostos Orgânicos Voláteis , Biomarcadores , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica , Oryza/química , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/análise
16.
Food Chem ; 381: 132213, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35121328

RESUMO

The aim of this work is to investigate the evolution of volatiles and quality of CSB during 4 d of storage at 4 °C and 25 °C, respectively. Rapidly increasing hardness and decreasing resilience were observed in CSB after 1 d of storage at 4 °C. However, relative soft CSB was found after 1 d of storage at 25 °C as a result of the lower rate of retrogradation. Volatiles were monitored by gas chromatography-mass spectrometer. Significant (P < 0.05) decrease of 4 esters and 2-pentylfuran were observed with prolonged storage time for CSB stored at both 4 °C and 25 °C. PCA analysis indicated that the storage temperature of 4 °C was beneficial to remain CSB volatiles during long storage time (2-4 d). These findings might be beneficial to retain more volatiles and quality and finally extend shelf-life of CSB.


Assuntos
Pão , Vapor , Pão/análise , China , Dureza , Temperatura
18.
Biochem Biophys Res Commun ; 583: 146-153, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34763194

RESUMO

Osteolytic disorders are characterized by impaired bone volume and trabecular structure that leads to severe fragility fractures. Studies have shown that excessive osteoclast activity causes impaired bone microstructure, a sign of osteolytic diseases such as osteoporosis. Approaches of inhibiting osteoclastogenesis and bone resorption specifically could prevent osteoporosis and other osteolytic disorders. Acacetin is a potent molecule extracted from plants with anti-cancer and anti-inflammatory bioactivities. Here, we demonstrated, for the first time, that acacetin repressed osteoclastogenesis, formation of F-actin rings, bone resorption activity, and osteoclast-related gene expression in vitro through modulating ERK, P38, and NF-κB signaling pathways and preventing expression of NFATc1. Micro-CT and H & E staining results indicated that acacetin alleviated LPS-induced osteolysis in vivo. Overall, our findings suggested that acacetin could help to prevent osteoporosis and other osteoclast-related osteolytic disorders.

19.
Front Bioeng Biotechnol ; 9: 625877, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490219

RESUMO

Titanium (Ti)-based alloys are widely used in tissue regeneration with advantages of improved biocompatibility, high mechanical strength, corrosion resistance, and cell attachment. To obtain bioactive bone-implant interfaces with enhanced osteogenic capacity, various methods have been developed to modify the surface physicochemical properties of bio-inert Ti and Ti alloys. Nano-structured hydroxyapatite (HA) formed by micro-arc oxidation (MAO) is a synthetic material, which could facilitate osteoconductivity, osteoinductivity, and angiogenesis on the Ti surface. In this paper, we applied MAO and steam-hydrothermal treatment (SHT) to produce HA-coated Ti, hereafter called Ti-M-H. The surface morphology of Ti-M-H1 was observed by scanning electron microscopy (SEM), and the element composition and the roughness of Ti-M-H1 were analyzed by energy-dispersive X-ray analysis, an X-ray diffractometer (XRD), and Bruker stylus profiler, demonstrating the deposition of nano-HA particles on Ti surfaces that were composed of Ca, P, Ti, and O. Then, the role of Ti-M-H in osteogenesis and angiogenesis in vitro was evaluated. The data illustrated that Ti-M-H1 showed a good compatibility with osteoblasts (OBs), which promoted adhesion, spreading, and proliferation. Additionally, the secretion of ALP, Col-1, and extracellular matrix mineralization was increased by OBs treated with Ti-M-H1. Ti-M-H1 could stimulate endothelial cells to secrete vascular endothelial growth factor and promote the formation of capillary-like networks. Next, it was revealed that Ti-M-H1 also suppressed inflammation by activating macrophages, while releasing multiple active factors to mediate osteogenesis and angiogenesis. Finally, in vivo results uncovered that Ti-M-H1 facilitated a higher bone-to-implant interface and was more attractive for the dendrites, which promoted osseointegration. In summary, MAO and SHT-treated Ti-M-H1 not only promotes in vitro osteogenesis and angiogenesis but also induces M2 macrophages to regulate the immune environment, which enhances the crosstalk between osteogenesis and angiogenesis and ultimately accelerates the process of osseointegration in vivo.

20.
Food Chem ; 365: 130512, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34243121

RESUMO

Pullulan is widely applied in the food industry due to its unique physicochemical properties, but little information is known about its effects on the quality of frozen cooked noodles (FCNs), nor the underlying mechanism. In this study, the addition of 0.3% and 0.5% pullulan resulted in better texture and cooking properties, and minor chrominance differences, and it significantly (P < 0.05) decreased the freezable water content and retarded the water migration. Pullulan inhibited the depolymerization of the glutenin macropolymer during 0-8 weeks of frozen storage. Meanwhile, pullulan caused slightly decreased α-helixes and increased ß-turns, as well as decreased degradation temperature, further suggesting that pullulan influenced the gluten network. A more compact microstructure was shown in the pullulan-fortified FCNs. This study provides a theoretical basis for the positive effects of pullulan on the quality of FCNs from the perspectives of water state and protein structure.


Assuntos
Culinária , Água , Farinha/análise , Congelamento , Glucanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA