Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Food Funct ; 15(17): 8629-8643, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39140384

RESUMO

Resveratrol is a non-flavonoid polyphenolic compound with numerous functional properties, such as anticancer, anti-inflammation, anti-oxidation, anti-obesity and more. However, resveratrol's poor solubility within aqueous media and low stability usually lead to compromised bioavailability, ultimately limiting its uptake and applications. Nanodelivery technologies have been studied intensively due to their potential in effectively improving resveratrol properties, thereby providing promising solutions for enhancing the bioavailability of resveratrol. Thus, this article aimed to review the recent advances of resveratrol nanodelivery systems, specifically on the types of nanodelivery systems, the corresponding preparation principles, advantages, as well as potential limitations associated. Meanwhile, studies have also found that coupled with nanodelivery systems, the functional properties of resveratrol could trigger apoptosis in cancer cells and inflammatory cells through various signaling pathways. Therefore, this article will also lead into discussions on the application aspects of resveratrol nanodelivery systems, emphasizing toward the fields of biomedical and food sciences. Potential pitfalls of resveratrol nanodelivery systems, such as issues with toxicity and target release, as well as outlooks regarding resveratrol nanodelivery systems are included in the Conclusion section, in the hope to provide insights for relevant future research.


Assuntos
Resveratrol , Resveratrol/química , Resveratrol/administração & dosagem , Resveratrol/farmacologia , Resveratrol/farmacocinética , Humanos , Animais , Sistemas de Liberação de Medicamentos/métodos , Disponibilidade Biológica , Nanopartículas/química
2.
Int J Biol Macromol ; 276(Pt 2): 133819, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39002915

RESUMO

In the present study, the non-fat whipped cream analogue was formulated by the combination of soy protein isolate, different polysaccharides and sucrose. Compared with single polysaccharide, the combined polysaccharide showed synergistic effect on formulating the non-fat whipped cream with better properties. The non-fat whipped creams showed high overrun (up to 570 %), excellent drainage stability (no drainage occurred within 120 min) and comparable hardness (up to 1.1 N) than that of control (a commercially dairy whipped cream). Moreover, the non-fat whipped creams were all solid-like (storage modulus > loss modulus) and exhibited outstanding shape retention ability. These properties were greatly affected by the types and ratios of combined polysaccharide. The combination of anionic and neutral polysaccharides was more beneficial for its properties, and the effect depended on the combined ratios. Especially for samples containing gellan gum/guar gum, their appearance only changed slightly after standing for 60 min, and simultaneously showed satisfying sensory acceptability when the combined ratio was 2/3. Therefore, these novel non-fat whipped creams could be popularized as the functional products aiming at specific groups such as diabetes and obesity people in the future.


Assuntos
Polissacarídeos , Polissacarídeos/química , Proteínas de Soja/química , Humanos
3.
J Agric Food Chem ; 72(27): 15301-15310, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38917412

RESUMO

The role of thermally generated 3-aminopropionamide as an intermediate in acrylamide formation in the Maillard reaction has been well established. Herein, the effect of epicatechin on the conversion of 3-aminopropionamide into acrylamide under oxidative conditions was investigated at 160-220 °C. Epicatechin promoted acrylamide generation and 3-aminopropionamide degradation. The stable isotope-labeling technique combined with UHPLC-Orbitrap-MS/MS analysis showed adduct formation between 3-aminopropionamide and the oxidized B ring of epicatechin to form a Schiff base. This initially formed Schiff base could directly degrade to acrylamide, undergo reduction or dehydration to other intermediates, and subsequently generate acrylamide. Based on accurate mass analysis, five intermediates with intact or dehydrated C rings were tentatively identified. Furthermore, reaction pathways were proposed that were supported by the changes in the levels of adducts formed during heating. To the authors' knowledge, this study is the first to reveal pathways through which flavanols promoted the formation of acrylamide in Maillard reactions.


Assuntos
Acrilamida , Catequina , Reação de Maillard , Oxirredução , Acrilamida/química , Catequina/química , Espectrometria de Massas em Tandem , Temperatura Alta , beta-Alanina/química , beta-Alanina/análogos & derivados , Bases de Schiff/química , Cromatografia Líquida de Alta Pressão
4.
Food Funct ; 15(13): 7174-7188, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38895817

RESUMO

Background and aims: There is limited and conflicting evidence about the association of erythrocyte fatty acids with coronary artery disease (CAD), particularly in China where the CAD rates are high. Our study aimed to explore the association between erythrocyte fatty acid composition and CAD risk in Chinese adults. Methods: Erythrocyte fatty acids of 314 CAD patients and 314 matched controls were measured by gas chromatography. Multivariable conditional logistic regression and restricted cubic spline models were used to explore the odds ratio with 95% confidence interval (OR, 95% CI) and potential association between erythrocyte fatty acids and CAD risk. Principal component analysis (PCA) was used to analyze further the potential role of various erythrocyte fatty acid patterns in relation to CAD risk. Results: Significant inverse associations were observed between high levels of erythrocyte total n-3 polyunsaturated fatty acids (n-3 PUFA) [ORT3-T1 = 0.18 (0.12, 0.28)], monounsaturated fatty acids (MUFA) [ORT3-T1 = 0.21 (0.13, 0.32)], and the risk of CAD. Conversely, levels of saturated fatty acids (SFAs) and n-6 polyunsaturated fatty acids (n-6 PUFAs) were positively associated with CAD risk [ORT3-T1 = 3.33 (2.18, 5.13), ORT3-T1 = 1.61 (1.06, 2.43)]. No significant association was observed between CAD risk and total trans fatty acids. Additionally, the PCA identifies four new fatty acid patterns (FAPs). The risk of CAD was significantly positively associated with FAP1 and FAP2, while being negatively correlated with FAP3 and FAP4. Conclusion: The different types of erythrocyte fatty acids may significantly alter susceptibility to CAD. Elevated levels of n-3-PUFAs and MUFAs are considered as protective biomarkers against CAD, while SFAs and n-6 PUFAs may be associated with higher CAD risk in Chinese adults. The risk of CAD was positively associated with FAP1 and FAP2, and negatively associated with FAP3 and FAP4. Combinations of erythrocyte fatty acids may be more important markers of CAD development than individual fatty acids or their subgroups.


Assuntos
Doença da Artéria Coronariana , Eritrócitos , Ácidos Graxos , Humanos , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/epidemiologia , Doença da Artéria Coronariana/metabolismo , Masculino , Eritrócitos/metabolismo , Eritrócitos/química , Feminino , Pessoa de Meia-Idade , China/epidemiologia , Estudos de Casos e Controles , Ácidos Graxos/sangue , Idoso , Fatores de Risco , Adulto , Ácidos Graxos Ômega-3/sangue
5.
Crit Rev Food Sci Nutr ; : 1-16, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38920118

RESUMO

As compared with exogenous components, non-starch components (NSCS), such as proteins, lipids, non-starch polysaccharides (NSPs), and polyphenols, inherently present in cereals, are more effective at inhibiting starch digestibility. Existing research has mostly focused on complex systems but overlooked the analysis of the in-situ role of the NSCS. This study reviews the crucial mechanisms by which endogenous NSCS inhibit starch digestion, emphasizing the spatial distribution-function relationship. Starch granules are filled with pores/channels-associated proteins and lipids, embedding in the protein matrix, and maintained by endosperm cell walls. The potential starch digestion inhibition of endogenous NSCS is achieved by altering starch gelatinization, molecular structure, digestive enzyme activity, and accessibility. Starch gelatinization is constrained by endogenous NSCS, particularly cell wall NSPs and matrix proteins. The stability of the starch crystal structure is enhanced by the proteins and lipids distributed in the starch granule pores and channels. Endogenous polyphenols greatly inhibit digestive enzymes and participate in the cross-linking of NSPs in the cell wall space, which together constitute a physical barrier that hinders amylase diffusion. Additionally, the spatial entanglement of NSCS and starch under heat and non-heat processing conditions reduces starch accessibility. This review provides novel evidence for the health benefits of whole cereals.

6.
J Agric Food Chem ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847323

RESUMO

Dietary proteins regulate glucose homeostasis via intestinal protein sensing-induced glucagon-like peptide 1 (GLP-1) secretion. However, the reported GLP-1-secreting peptides derived from dietary proteins are few, and studies regarding GLP-1-secreting peptide identification by traditional separation and purification methods are laborious. Herein, we have rapidly virtual-screened two GLP-1 secreting peptides from pea protein hydrolysates (PPHs) by peptidomic analysis and molecular docking with peptide transporter 1 (PepT1). PPH-stimulated GLP-1 secretion decreased after adding the PepT1 antagonist 4-aminobenzoic acid (4-AMBA), indicating that PepT1 activation was involved in PPH-induced GLP-1 secretion in NCI-H716 cells. Subsequently, 307 tripeptides in PPHs were obtained through peptidomic analysis. Among them, two GLP-1-secreting peptides, FLR and LRW, were identified via PepT1 activation-based molecular docking. FLR and LRW (1 mg/mL) increased GLP-1 levels to 170.20% ± 27.83% and 272.37% ± 45.96%, respectively (p < 0.05). More importantly, molecular docking implied that the interactions between peptides and the active center of PepT1 (especially Glu595, Asn329, and Asn171 in the N-pocket and Arg27 in the C-pocket) were crucial for peptide activity in stimulating GLP-1 secretion. Our study suggested that the combination of peptidomics and PepT1 activation-based molecular docking is a promising approach for identification of GLP-1-secreting peptides.

7.
Carbohydr Polym ; 339: 122202, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38823898

RESUMO

Interactions among multi-component play a critical role in modulating the foaming properties of aerated foods. This study evaluated the mechanisms of synergistic improvement of gellan gum (GEG) and guar gum (GUG) on the foaming properties of soy protein isolate (SPI)-based complex. The results showed that the GEG/GUG ratio was closely related to the intermolecular interactions of SPI-based ternary complex and the dynamical changing of its foaming properties. The SPI/GEG/GUG ternary complex with a GEG/GUG ratio of 2/3 exhibited the highest foamability (195 %) and comparable foam stability (99.17 %), which were 32.95 % and 2.99 % higher than that of SPI/GEG binary complex. At this ratio, GUG promoted the interactions between SPI and GEG, and bound to complex's surface through hydrogen bonding, resulting in the increase of particle size and surface charge, and the decrease of surface hydrophobicity. Although this reduced the diffusion of complex onto the air/water interface, it increased permeation rate and molecular rearrangement behavior, which were the potential mechanisms to improve the foaming properties. Additionally, the synergistic effect of GEG and GUG also enhanced the elastic strength and solid characteristics of foam systems. This study provided a theoretical guidance for the targeted modulation of foaming properties of multi-component aerated foods.


Assuntos
Galactanos , Mananas , Gomas Vegetais , Polissacarídeos Bacterianos , Proteínas de Soja , Gomas Vegetais/química , Galactanos/química , Proteínas de Soja/química , Mananas/química , Polissacarídeos Bacterianos/química , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Ligação de Hidrogênio
8.
Food Chem X ; 22: 101434, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38779499

RESUMO

In this study, lipase from Candida rugosa was immobilized on hydrophobic hierarchical porous hollow silica microsphere (HPHSM-C3) via adsorption. The prepared biocatalyst HPHSM-C3@CRL exhibited higher activity, thermal and pH stability. HPHSM-C3@CRL remained 70.2% of initial activity after 30 days of storage at 24 °C and 50.4% of initial activity after 10 cycles. Moreover, HPHSM-C3@CRL was utilized in enzymatic enrichment of omega-3 polyunsaturated fatty acids (ω-3 PUFAs) in glycerides, achieving ω-3 PUFAs content of 53.42% with the hydrolysis rate of 48.78% under optimal condition. The Km and Vmax value of HPHSM-C3@CRL was 42.2% lower and 63.5% higher than those of CRL, respectively. The 3D structure analysis of CRL, substrates and pore structure of HPHSM-C3 suggested that the hierarchical pore improved activity and selectivity of immobilized lipase. This result demonstrated that HPHSM-C3@CRL may be an effective biocatalyst for the enzymatic enrichment of ω-3 PUFAs in food industries.

9.
Int J Biol Macromol ; 268(Pt 1): 131583, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621554

RESUMO

This study evaluated the foaming properties, the dynamic adsorption behavior at the air/water (A/W) interface and the foam rheological characteristics of complexes formed by soy protein isolate (SPI) and different charged polysaccharides, including chitosan (CS), guar gum (GUG) and gellan gum (GEG). The results showed that the SPI/CS10 had the highest initial foam volume (26.67 mL), which were 3.89 %, 100.08 % and 70.19 % higher than that of single SPI, SPI/GUG and SPI/GEG complexes, respectively. Moreover, three charged polysaccharides could all significantly improve the foam stability of complexes. Among them, foams stabilized by SPI/GEG10 were the most stable that the foam volume slightly changed (approximately 1 mL) and no drainage occurred throughout the whole recording process. The interfacial behavior analysis showed that SPI/CS10 had higher diffusion (Kdiff) and rearrangement rate (KR) but lower penetration rate (KP) at the A/W interface compared with single SPI, while SPI/GUG10 and all SPI/GEG complexes showed higher KR and KP but lower Kdiff. In addition, SPI/CS10 was beneficial to concurrently enhance the elastic strength and solid-like behavior of foam system, while all SPI/GEG complexes could improve the elastic strength of foam system but was not conducive to the solid-like behavior.


Assuntos
Ar , Polissacarídeos , Reologia , Proteínas de Soja , Água , Proteínas de Soja/química , Água/química , Polissacarídeos/química , Gomas Vegetais/química , Galactanos/química , Polissacarídeos Bacterianos/química , Quitosana/química , Adsorção , Mananas/química
10.
J Sci Food Agric ; 104(11): 6902-6913, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38591735

RESUMO

BACKGROUND: Recently, peptides have been studied in Caenorhabditis elegans for anti-aging research. Due to the lack of sufficient evidence, we conducted this meta-analysis focusing on the anti-aging effect of peptides in C. elegans to provide more convincing evidence. RESULTS: A literature search in PubMed, SCOUPUS, and Web of Science databases yielded 2879 articles. After removing duplicates and based on inclusion criteria and STAIR checklist quality assessment, nine articles were selected. Data extraction and analysis showed that, compared to the control group without peptide intervention, peptide supplementation significantly reduced nematode mortality risk [hazard ratio = 0.54, 95% confidence interval (CI) = 0.47, 0.62; P < 0.05], significantly increased the pharyngeal pumping rate [standardized mean difference (SMD) = 1.64, 95% CI = 0.87, 2.41; P < 0.05], bending frequency (SMD = 1.67, 95% CI = 1.16, 2.18; P < 0.05), and significantly decreased the accumulation of lipofuscin levels within nematodes (SMD = -4.48, 95% CI = -6.85, -2.12; P < 0.05). Additionally, subgroup analysis showed that doses ranging from 0.1 to 1 mg/mL (HR = 0.50, 95% CI = 0.38, 0.65; P < 0.05) displayed better anti-aging effects compared to other dose ranges. CONCLUSION: The findings suggest that peptides can significantly extend the lifespan of C. elegans under normal circumstances and improve three indicators of healthy life. More importantly, subgroup analysis revealed that a dosage of 0.1-1 mg/mL demonstrated superior anti-aging effects. This meta-analysis provides more convincing evidence that peptides can play an anti-aging role in C. elegans. © 2024 Society of Chemical Industry.


Assuntos
Envelhecimento , Caenorhabditis elegans , Peptídeos , Animais , Envelhecimento/efeitos dos fármacos , Caenorhabditis elegans/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Peptídeos/farmacologia , Peptídeos/química
11.
J Agric Food Chem ; 72(11): 5503-5525, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38442367

RESUMO

Conjugated linoleic acid (CLA) has been extensively characterized due to its many biological activities and health benefits, but conjugated linolenic acid (CLnA) is still not well understood. However, CLnA has shown to be more effective than CLA as a potential functional food ingredient. Current research has not thoroughly investigated the differences and advantages between CLnA and CLA. This article compares CLnA and CLA based on molecular characteristics, including structural, chemical, and metabolic characteristics. Then, the in vivo research evidence of CLnA on various health benefits is comprehensively reviewed and compared with CLA in terms of effectiveness and mechanism. Furthermore, the potential of CLnA in production technology and product protection is analyzed. In general, CLnA and CLA have similar physicochemical properties of conjugated molecules and share many similarities in regulation effects and pathways of various health benefits as well as in the production methods. However, their specific properties, regulatory capabilities, and unique mechanisms are different. The superior potential of CLnA must be specified according to the practical application patterns of isomers. Future research should focus more on the advantageous characteristics of different isomers, especially the effectiveness and safety in clinical applications in order to truly exert the potential value of CLnA.


Assuntos
Ingredientes de Alimentos , Ácidos Linoleicos Conjugados , Ácido alfa-Linolênico/química , Ácidos Linoleicos Conjugados/química , Isomerismo , Alimento Funcional
12.
Molecules ; 29(4)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38398664

RESUMO

Medium- and long-chain triacylglycerol (MLCT), as a novel functional lipid, is valuable due to its special nutritional properties. Its low content in natural resources and inefficient synthesis during preparation have limited its practical applications. In this study, we developed an effective Pickering emulsion interfacial catalysis system (PE system) for the enzymatic synthesis of MLCT by trans-esterification. Lipase NS 40086 served simultaneously as a catalyst and a solid emulsifier to stabilize the Pickering emulsion. Benefitting from the sufficient oil-water interface, the obtained PE system exhibited outstanding catalytic efficiency, achieving 77.5% of MLCT content within 30 min, 26% higher than that of a water-free system. The Km value (0.259 mM) and activation energy (14.45 kJ mol-1) were 6.8-fold and 1.6-fold lower than those of the water-free system, respectively. The kinetic parameters as well as the molecular dynamics simulation and the tunnel analysis implied that the oil-water interface enhanced the binding between substrate and lipase and thus boosted catalytic efficiency. The conformational changes in the lipase were further explored by FT-IR. This method could give a novel strategy for enhancing lipase activity and the design of efficient catalytic systems to produce added-value lipids. This work will open a new methodology for the enzymatic synthesis of structured lipids.

13.
Crit Rev Food Sci Nutr ; : 1-21, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343184

RESUMO

Omega-9 monounsaturated fatty acids (ω-9 MUFAs) are a group of unsaturated fatty acids with a unique double bond in the 9th position at the end of the methyl group terminal, having the same double bond location but different carbon chain lengths. Although knowledge about ω-9 MUFAs is constantly being updated, problems with its integration remain in the field. The review summarizes the natural sources, biosynthesis, and catabolic properties of ω-9 MUFAs, emphasizing their positive effects on health functions as well as the active intermediates produced during their metabolic processes. Subsequently, the gap between the actual consumption and recommended intake of ω-9 MUFAs in our daily diet was calculated, and their food safety and potential challenges were discussed. Finally, the outlook of potential future applications and possible research trends are presented. The review aims to promote the rational consumption of ω-9 MUFAs, provide references for their application as functional foods and clinical auxiliary special medical foods, and propose more ideas and possibilities for future scientific research.

14.
Int J Biol Macromol ; 259(Pt 2): 129334, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218298

RESUMO

The digestive properties of oat-based food have garnered considerable interest. This study aimed to explore the internal and external factors contributing to different digestion properties of oat flour under actual processing conditions. Analysis of the ordered structure of oat starch revealed that an increase in gelatinization moisture to 60 % led to a decrease in crystallinity, R1047/1022 value, and helical structures content to 0, 0.48 %, and 1.45 %, respectively. Even when the crystal structure was completely destroyed, the short-range structure retained a certain degree of order. Surface structure observations of starch granules and penetration experiments with amylase-sized polysaccharide fluorescence probes indicated that non-starch components and small pores effectively hindered the diffusion of the probes but low-moisture (20 %) gelatinization substantially damaged this barrier. Furthermore, investigations into starch digestibility and starch molecular structure revealed that the ordered structure remaining inside the starch after high gelatinization delayed the digestion rate (0.028 min-1) and did not increase the content of resistant starch (7.10 %). It was concluded that the surface structure and non-starch components of starch granules limited the extent of starch digestion, whereas the spatial barrier of the residual ordered structure affected the starch digestion rate.


Assuntos
Avena , Amido , Amido/química , Avena/química , Farinha , Digestão , Amilases
15.
Int J Biol Macromol ; 261(Pt 1): 129820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286385

RESUMO

Marine-based dietary oils (MDOs), which are naturally obtained from different sources, have been scientifically recommended as potent functional bioactives owing to their therapeutic biological activities; however, they have exhibited plenty of health benefits. Though they are very sensitive to light, temperature, moisture, and oxygen, as well as being chemically unstable and merely oxidized, this may limit their utilization in food and pharmaceutical products. Miro- and nanoencapsulation techniques are considered to be the most promising tactics for enhancing the original characteristics, physiochemical properties, and therapeutic effects of entrapped MDOs. This review focuses on the biomacromolecule-stabilized micro/nanocarriers encompassing a wide range of MDOs. The novel-equipped polysaccharides and protein-based micro/nanocarriers cover microemulsions, microcapsules, nanoemulsions, and nanoliposomes, which have been proven to be encouraging candidates for the entrapment of diverse kinds of MDOs. In addition, the current state-of-the-art loading of various MDOs through polysaccharide and protein-based micro/nanocarriers has been comprehensively discussed and tabulated in detail. Biomacromolecule-stabilized nanocarriers, particularly nanoemulsions and nanoliposomes, are addressed as propitious nanocargos for protection of MDOs in response to thought-provoking features as well as delivering the successful, meticulous release to the desired sites. Gastrointestinal fate (GF) of biopolymeric micro/nanocarriers is fundamentally based on their centrifugation, dimension, interfacial, and physical properties. The external surface of epithelial cells in the lumen is the main site where the absorption of lipid-based nanoparticles takes place. MDO-loaded micro- and nanocarriers with biological origins or structural modifications have shown some novel applications that could be used as future therapies for cardiovascular disorders, thanks to today's cutting-edge medical technology. In the future, further investigations are highly needed to open new horizons regarding the application of polysaccharide and protein-based micro/nanocarriers in food and beverage products with the possibility of commercialization in the near future for industrial use.


Assuntos
Doenças Cardiovasculares , Gorduras Insaturadas na Dieta , Nanopartículas , Humanos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/prevenção & controle , Antioxidantes/química , Alimentos , Polissacarídeos/química
16.
Food Funct ; 15(3): 1208-1222, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38224465

RESUMO

Background: Uncertainty exists about the link between omega-3 fatty acid, omega-6 fatty acid, and total polyunsaturated fatty acid (PUFA) intake and mortality in atherosclerotic cardiovascular disease (ASCVD) patients, and no meta-analyses summarize the relationship between these various types of PUFAs and ASCVD. Methods: Web of Science, PubMed, EBSCO and Cochrane Library up to November 30, 2022 were searched for prospective randomized controlled studies investigating the relationships among omega-3, omega-6, and PUFA intake and mortality and cardiovascular events in ASCVD patients. This study has been registered at PROSPERO (No. CRD42023407566). Results: This meta-analysis included 21 publications from 17 studies involving 40 861 participants published between 1965 and 2022. In ASCVD patients, omega-3 may lower all-cause mortality (RR: 0.90, 95% CI [0.83, 0.98], I2 = 8%), CVD mortality (RR: 0.82, 95% CI [0.73, 0.91], I2 = 34%) and CVD events (RR: 0.90, 95% CI [0.86, 0.93], I2 = 79%). Subgroup analyses showed that EPA or EPA ethyl ester supplementation reduced CVD events, while the mixture of EPA and DHA had no significant impact. Long-chain omega-3 consumption of 1.0-4.0 g per d reduced death risk by 3.5% for each 1 g per d increase. Omega-6 and PUFA had no significant effect on mortality or CVD events, with low-quality evidence and significant heterogeneity. Conclusions: omega-3 intake is associated with a reduced risk of all-cause mortality, CVD mortality, and CVD events in ASCVD patients, while omega-6 or total PUFA intake showed no significant association. Increasing the omega-3 intake by 1 g per d resulted in a 3.5% decrease in the risk of death. These findings support the recommendation of supplements with omega-3 fatty acids for the secondary prevention of ASCVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Ácidos Graxos Ômega-3 , Humanos , Estudos Prospectivos , Ácidos Graxos Ômega-3/efeitos adversos , Ácidos Graxos Insaturados , Suplementos Nutricionais , Aterosclerose/tratamento farmacológico , Aterosclerose/prevenção & controle , Aterosclerose/induzido quimicamente
17.
Food Funct ; 15(3): 1158-1169, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38239106

RESUMO

In recent years, as a functional potential pseudocereal, chia seed (Salvia hispanica L.) has been of great interest for its comprehensive nutritional profile and attractive qualities after ingestion. It is reported that a reasonable dietary supplementation of chia seed (CS) contributes to the prevention and treatment of acute and chronic diseases (inflammation, diabetes, hypertension, obesity, kidney stone, etc.). CS contains a variety of bioactive macromolecular substances, such as oil, protein and gum, which manifest distinguished health-promoting activities in both in vivo and in vitro research studies. This article provides a comprehensive compendium on the functional importance of CS, in the context of biological activities and mechanism of actions of CS. Specifically, CS and its components alleviate inflammation and regulate glucose and fatty acid metabolism by regulating key influencing factors in the adenosine 5'-monophosphate-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), nuclear factor kappa B (NF-κB), peroxisome-activated receptor gamma (PPAR-γ) and transforming growth factor-beta (TGF-ß) pathways and the insulin receptor substrate (IRS)-mediated insulin signaling pathway. In the meantime, predictions of metabolic pathways of CS peptides based on the known tracks of newly researched active peptides were proposed, with the aim of emphasizing the enormous research space of CS peptides compared to other functional active peptides.


Assuntos
Obesidade , Salvia hispanica , Salvia , Humanos , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Extratos Vegetais/metabolismo , Insulina/metabolismo , Inflamação/metabolismo , Sementes/química , Salvia/química
18.
Int J Biol Macromol ; 257(Pt 2): 127504, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37858650

RESUMO

Tartary buckwheat protein-rutin/quercetin covalent complex was synthesized in alkaline oxygen-containing environment, and its binding sites, conformational changes and functional properties were evaluated by multispectral technique and proteomics. The determination of total sulfhydryl and free amino groups showed that rutin/quercetin can form a covalent complex with BPI and could significantly reduce the group content. Ultraviolet-visible spectrum analysis showed that protein could form new characteristic peaks after binding with rutin/quercetin. Circular dichroism spectrum analysis showed that rutin and quercetin caused similar changes in the secondary structure of proteins, both promoting ß-sheet to α-helix, ß-ture and random coil transformation. The fluorescence spectrometry results showed that the combination of phenols can cause the fluorescence quenching, and the combination of rutin was stronger than the quercetin. Proteomics showed that there were multiple covalent binding sites between phenols and protein. Rutin had a high affinity for arginine, and quercetin and cysteine had high affinity. Meanwhile, the combination of rutin/quercetin and protein had reduced the surface hydrophobic ability of the protein, and improved the foaming, stability and antioxidant properties of the protein. This study expounded the mechanism of the combination of BPI and rutin/quercetin, and analysed the differences of the combination of protein and phenols in different structures. The findings can provide a theoretical basis for the development of complexes in the area of food.


Assuntos
Fagopyrum , Quercetina , Quercetina/química , Fenóis , Fenol , Fagopyrum/química , Rutina/química , Sítios de Ligação
19.
J Sci Food Agric ; 104(2): 698-706, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-37653274

RESUMO

BACKGROUND: This research was to investigate the interaction mechanism between 2S albumin and 13S globulin (2S and 13S, the most important storage proteins in Tartary buckwheat seeds) and three phenols (rutin, quercetin and myricetin) regarding the structural and antioxidant properties of their complexes. RESULTS: There are differences in the binding affinity of phenols for 2S and 13S. Rutin had a higher binding affinity for 2S, myricetin had a higher binding affinity for 13S, and 13S exhibited a higher affinity toward phenols than did 2S. Binding with phenols significantly changed the secondary and tertiary structures of 2S and 13S, decreased the surface hydrophobic value and enhanced the antioxidant capacity. Molecular docking and isothermal titration calorimetry showed that the binding processes were spontaneous and that there were hydrogen bonds, hydrophobic bonds and van der Waals force interactions between phenols and proteins. CONCLUSION: These findings could provide meaningful guidance for the further application of buckwheat protein complex. © 2023 Society of Chemical Industry.


Assuntos
Antioxidantes , Fagopyrum , Antioxidantes/química , Fenóis/química , Fagopyrum/química , Simulação de Acoplamento Molecular , Rutina , Sítios de Ligação
20.
Food Funct ; 14(23): 10581-10590, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37955444

RESUMO

Whole grain insoluble dietary fiber (IDF) is a good source of bound-form polyphenols. In the present study, insoluble dietary fiber rich in bound polyphenols (BP-IDF) from quinoa, rye and wheat was prepared. The carbonyl scavenging capacities of these three BP-IDFs and the effects of in vitro gastrointestinal (GI) digestion and colonic fermentation on their scavenging activities were studied. The results indicated that the fiber-bound polyphenols from quinoa showed the highest carbonyl scavenging capacity compared to those from rye and wheat. After colonic fermentation, more than 73% of the bound polyphenols were still retained in the fermented residues of the quinoa BP-IDF. The fiber-bound polyphenols in the GI-digested residues of quinoa retained considerable carbonyl scavenging activities. During the fermentation process, the residual fiber-bound polyphenols in the fermented residues still scavenged 35.8% to 45.2% of methylglyoxal, 19.3% to 25.4% of glyoxal, 50.7% to 60.5% of acrolein and 5.2% to 9.7% of malondialdehyde, showing a critical role in the scavenging of carbonyl compounds compared to the released and metabolized polyphenols. These findings confirm the capacity of fiber-bound polyphenols from three whole grains to scavenge carbonyls during in vitro digestion and fermentation processes, suggesting that they could be used as functional ingredients to maintain continuous defenses against carbonyls along the digestive tract.


Assuntos
Chenopodium quinoa , Polifenóis , Polifenóis/farmacologia , Chenopodium quinoa/química , Fermentação , Digestão , Carboidratos/farmacologia , Fibras na Dieta/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA