Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nat Commun ; 15(1): 9460, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39487125

RESUMO

Rotator cuff tendinopathy is the most common tendinopathy type with the worst prognosis. Conventional treatments often elicit heterogeneous drug responses due to the diversity of tendinopathy. Hence, this study attempted a classification of 126 diseased tendons into three distinct subtypes with opposite pathogenic mechanisms based on transcriptomic and clinical features. The hypoxic atrophic subtype with white appearance (Hw) exhibits downregulated neovascularization pathways. The inflammatory proliferative subtype with white appearance (Iw) shows a moderate upregulation of inflammatory characteristics. The inflammatory proliferative subtype with red appearance (Ir) exhibits the highest levels of upregulated neovascularization and inflammatory pathways, along with severe joint dysfunction. We then established research models, including subtype-specific simulations in animal models and clinical data analysis. These revealed that glucocorticoid, a controversial commonly used drug, was only effective in treating the Ir subtype. Hence, the tendinopathy subtypes elucidated in this study have significant implications for developing precision treatment of tendinopathy.


Assuntos
Tendinopatia , Humanos , Tendinopatia/tratamento farmacológico , Tendinopatia/classificação , Animais , Masculino , Medicina de Precisão/métodos , Feminino , Modelos Animais de Doenças , Manguito Rotador/patologia , Glucocorticoides/uso terapêutico , Transcriptoma , Pessoa de Meia-Idade
2.
Sci Total Environ ; 924: 171502, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38453070

RESUMO

Deciphering the biogeochemical coupling of multiple elements in soils could better mechanistic understanding of ecosystem stability response to the alien invasion. The coupling of 45 elements in soils from wetlands covered by Spartina alterniflora (Sa) was compared with that in soils covered by native Phragmites australis (Pa) in coastal regions of China. Results showed that S. alterniflora invasion not only significantly reshaped geochemical enrichment and dispersion states, but also decoupled the coupling of multiple elements in soils compared with Pa. Atomic mass emerged as the primary factor governing the coupling of multiple elements, of which a significantly positive correlation exhibited between atomic mass with elemental coupling in Pa, but no such relation was observed in SaThe coupling of lighter elements was more susceptible to and generally enhanced by the invasion of S. alterniflora compared to the heavier, of which carbon, iron (Fe), and cadmium (Cd) had the highest susceptibility. Besides atomic mass, biological processes (represented by soil organic carbon, nitrogen, phosphorus, and sulfur), interactions between sea and land (represented by salinity and pH), and their combination explained 17 %, 10 %, and 13 % variation in the coupling of multiple elements, respectively. The present work confirmed that S. alterniflora invasion was the important factor driving soil multi-element cycling and covariation in coastal wetlands.


Assuntos
Ecossistema , Áreas Alagadas , Solo , Carbono/análise , Espécies Introduzidas , Poaceae/fisiologia , China
3.
FASEB J ; 38(3): e23432, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38300173

RESUMO

The IGF signaling pathway plays critical role in regulating skeletal myogenesis. We have demonstrated that KIF5B, the heavy chain of kinesin-1 motor, promotes myoblast differentiation through regulating IGF-p38MAPK activation. However, the roles of the kinesin light chain (Klc) in IGF pathway and myoblast differentiation remain elusive. In this study, we found that Klc1 was upregulated during muscle regeneration and downregulated in senescence mouse muscles and dystrophic muscles from mdx (X-linked muscular dystrophic) mice. Gain- and loss-of-function experiments further displayed that Klc1 promotes AKT-mTOR activity and positively regulates myogenic differentiation. We further identified that the expression levels of IRS1, the critical node of IGF-1 signaling, are downregulated in Klc1-depleted myoblasts. Coimmunoprecipitation study revealed that IRS1 interacted with the 88-154 amino acid sequence of Klc1 via its PTB domain. Notably, the reduced Klc1 levels were found in senescence and osteoporosis skeletal muscle samples from both mice and human. Taken together, our findings suggested a crucial role of Klc1 in the regulation of IGF-AKT pathway during myogenesis through stabilizing IRS1, which might ultimately influence the development of muscle-related disorders.


Assuntos
Fator de Crescimento Insulin-Like I , Proteínas Proto-Oncogênicas c-akt , Animais , Humanos , Camundongos , Proteínas Substratos do Receptor de Insulina/genética , Cinesinas/genética , Camundongos Endogâmicos mdx , Mioblastos , Transdução de Sinais
4.
Bioeng Transl Med ; 8(5): e10561, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37693060

RESUMO

Spinal cord injury (SCI) causes blood-spinal cord barrier (BSCB) disruption, leading to secondary damage, such as hemorrhagic infiltration, inflammatory response, and neuronal cell death. It is of great significance to rebuild the BSCB at the early stage of SCI to alleviate the secondary injury for better prognosis. Yet, current research involved in the reconstruction of BSCB is insufficient. Accordingly, we provide a thermosensitive hydrogel-based G protein-coupled receptor 124 (GPR124) delivery strategy for rebuilding BSCB. Herein, we firstly found that the expression of GPR124 decreased post-SCI and demonstrated that treatment with recombinant GPR124 could partially alleviate the disruption of BSCB post-SCI by restoring tight junctions (TJs) and promoting migration and tube formation of endothelial cells. Interestingly, GPR124 could also boost the energy metabolism of endothelial cells. However, the absence of physicochemical stability restricted the wide usage of GPR124. Hence, we fabricated a thermosensitive heparin-poloxamer (HP) hydrogel that demonstrated sustained GPR124 production and maintained the bioactivity of GPR124 (HP@124) for rebuilding the BSCB and eventually enhancing functional motor recovery post-SCI. HP@124 hydrogel can encapsulate GPR124 at the lesion site by injection, providing prolonged release, preserving wounded tissues, and filling injured tissue cavities. Consequently, it induces synergistically efficient integrated regulation by blocking BSCB rupture, decreasing fibrotic scar formation, minimizing inflammatory response, boosting remyelination, and regenerating axons. Mechanistically, giving GPR124 activates energy metabolism via elevating the expression of phosphoenolpyruvate carboxykinase 2 (PCK2), and eventually restores the poor state of endothelial cells. This research demonstrated that early intervention by combining GPR124 with bioactive multifunctional hydrogel may have tremendous promise for restoring locomotor recovery in patients with central nervous system disorders, in addition to a translational approach for the medical therapy of SCI.

5.
ACS Nano ; 17(19): 18864-18872, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37733581

RESUMO

Emerging applications such as augmented reality, self-driving vehicles, and quantum information technology require optoelectronic devices capable of sensing a low number of photons with high sensitivity (including gain) and high speed and that could operate in the infrared at telecom windows beyond silicon's bandgap. State-of-the-art semiconductors achieve some of these functions through costly and not easily scalable doping and epitaxial growing methods. Colloidal quantum dots (QDs), on the other hand, could be easily tuned and are compatible with consumer electronics manufacturing. However, the development of a QD infrared photodetector with high gain and high response speed remains a challenge. Herein, we present a QD monolithic multijunction cascade photodetector that advances in the speed-sensitivity-gain space through precise control over doping and bandgap. We achieved this by implementing a QD stack in which each layer is tailored via bandgap tuning and electrostatic surface manipulation. The resulting junctions sustain enhanced local electric fields, which, upon illumination, facilitate charge tunneling, recirculation, and gain, but retain low dark currents in the absence of light. Using this platform, we demonstrate an infrared photodetector sensitive up to 1500 nm, with a specific detectivity of ∼3.7 × 1012 Jones, a 3 dB bandwidth of 300 kHz (0.05 cm2 device), and a gain of ∼70× at 1300 nm, leading to an overall gain-bandwidth product over 20 MHz, in comparison with 3 kHz of standard photodiode devices of similar areas.

6.
Sheng Wu Gong Cheng Xue Bao ; 39(8): 3451-3463, 2023 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-37622372

RESUMO

Yeast autolysis affects the flavor and quality of beer. The regulation of yeast autolysis is a need for industrial beer production. Previous studies on brewer's yeast autolysis showed that the citric acid cycle-related genes had a great influence on yeast autolysis. To explore the contribution of isocitrate dehydrogenase genes in autolysis, the IDP1 and IDP2 genes were destroyed or overexpressed in typical lager yeast Pilsner. The destruction of IDP1 gene improved the anti-autolytic ability of yeast, and the anti-autolytic index after 96 h autolysis was 8.40, 1.5 times higher than that of the original strain. The destruction of IDP1 gene increased the supply of nicotinamide adenine dinucleotide phosphate (NADPH) and the NADPH/NADP+ ratio was 1.94. After fermentation, intracellular ATP level was 1.8 times higher than that of the original strain, while reactive oxygen species (ROS) was reduced by 10%. The destruction of IDP2 gene resulted in rapid autolysis and a decrease in the supply of NADPH. Anti-autolytic index after 96 h autolysis was 4.03 and the NADPH/NADP+ ratio was 0.89. After fermentation, intracellular ATP level was reduced by 8% compared with original strain, ROS was 1.3 times higher than that of the original strain. The results may help understand the regulation mechanism of citric acid cycle-related genes on yeast autolysis and provide a basis for the selection of excellent yeast with controllable anti-autolytic performance.


Assuntos
Trifosfato de Adenosina , Isocitrato Desidrogenase , Humanos , Isocitrato Desidrogenase/genética , NADP , Espécies Reativas de Oxigênio , Autólise
7.
Eur J Med Res ; 28(1): 260, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501089

RESUMO

BACKGROUND: Shoulder is vulnerable to dislocation owing to its anatomical structure and the increasing popularity of contact sports in young population. The management of first-time anterior shoulder dislocation in this group is still controversial and the prognosis are varied. This review aimed to compare the results of arthroscopic Bankart repair and conservative management for first-time traumatic anterior shoulder dislocation in young active patients. METHODS: Databases were searched till November 2021, and comparative studies between arthroscopic Bankart repair and conservative management for first-time traumatic anterior shoulder dislocation in young population were selected. Methodological quality of the studies was assessed according to the Cochrane Back Review Group 12-item scale. Outcome measures included recurrence of instability, return to play, subsequent instability surgery, and shoulder functional scores. RESULTS: The search returned 12 eligible trials with 786 participants. All the trials were of prospective design. After arthroscopic Bankart repair, patients experienced significantly less re-dislocation (7.5% vs. 53.0%, p < 0.00001, I2 = 0%), subluxation (3.1% vs. 24.2%, p < 0.0001, I2 = 0%), positive apprehension test (7.3% vs. 25.8%, p = 0.002, I2 = 11%), and subsequent surgical treatment for instability (5.6% vs. 37.8%, p < 0.00001, I2 = 0%) when compared with those underwent conservative management. And more patients returned to play (83.5% vs. 66.0%, p = 0.03, I2 = 81%) after arthroscopic Bankart repair. Outcomes regarding the functional scores did not reach a significant difference between the two cohorts. CONCLUSIONS: Arthroscopic Bankart repair showed superiority over conservative management in terms of recurrence, return to play, and subsequent instability surgery during the follow-up in young active patients that encountered first episode of dislocation. As long-term prognosis is comparable, an immediate surgical stabilization might not be suitable for everyone.


Assuntos
Instabilidade Articular , Luxação do Ombro , Articulação do Ombro , Humanos , Luxação do Ombro/cirurgia , Ombro , Articulação do Ombro/cirurgia , Tratamento Conservador , Instabilidade Articular/cirurgia , Artroscopia/métodos , Recidiva , Estudos Retrospectivos
8.
J Nanobiotechnology ; 21(1): 177, 2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37268942

RESUMO

Long-term chronic inflammation after Achilles tendon injury is critical for tendinopathy. Platelet-rich plasma (PRP) injection, which is a common method for treating tendinopathy, has positive effects on tendon repair. In addition, tendon-derived stem cells (TDSCs), which are stem cells located in tendons, play a major role in maintaining tissue homeostasis and postinjury repair. In this study, injectable gelatine methacryloyl (GelMA) microparticles containing PRP laden with TDSCs (PRP-TDSC-GM) were prepared by a projection-based 3D bioprinting technique. Our results showed that PRP-TDSC-GM could promote tendon differentiation in TDSCs and reduce the inflammatory response by downregulating the PI3K-AKT pathway, thus promoting the structural and functional repair of tendons in vivo.


Assuntos
Plasma Rico em Plaquetas , Tendinopatia , Ratos , Animais , Hidrogéis/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Tendões , Tendinopatia/terapia , Tendinopatia/metabolismo , Células-Tronco , Plasma Rico em Plaquetas/metabolismo , Impressão Tridimensional
9.
J Agric Food Chem ; 71(14): 5614-5629, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37000489

RESUMO

Enzymes from thermophilic microorganisms usually show high thermostability, which is of great potential in industrial application; to understand the structural logic of these enzymes is helpful for the construction of robust biocatalysts. In this study, based on the crystal structure of an N-demethylase─TrSOX─with outstanding thermostability from Thermomicrobium roseum, substitutions were introduced on the aggregation interface and rigid spots to reduce the aggregation ratio and the rigidity. Four substitutions on the aggregation interface─V162S, M308S, F170S, and V306S─considerably reduced the thermostability and slightly enhanced the catalytic efficiency. In addition, the thermostable framework was considerably disrupted in several multiple P → G substitutions in several local motifs (P129G/P134G, P237G/P259G, and P259G/P276G). These structural fluctuations were in good accordance with whole-structure or partial root-mean-square deviation, radius of gyration H-bonds, and solvent-accessible surface area values in molecular dynamics simulation. Furthermore, these key spots were introduced into an unstable homolog from Bacillus sp., resulting in a dramatical increase in the half-life at 60 °C from <10 to 1440 min. These results could help understand the natural stable framework of thermophilic enzymes, which could be references for the construction of robust enzymes in industrial applications.


Assuntos
Simulação de Dinâmica Molecular , Oxirredutases N-Desmetilantes , Meia-Vida , Temperatura
10.
Redox Biol ; 61: 102635, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870110

RESUMO

Glutathione S-transferase P1(GSTP1) is known for its transferase and detoxification activity. Based on disease-phenotype genetic associations, we found that GSTP1 might be associated with bone mineral density through Mendelian randomization analysis. Therefore, this study was performed both in vitro cellular and in vivo mouse model to determine how GSTP1 affects bone homeostasis. In our research, GSTP1 was revealed to upregulate the S-glutathionylation level of Pik3r1 through Cys498 and Cys670, thereby decreasing its phosphorylation, further controlling the alteration of autophagic flux via the Pik3r1-AKT-mTOR axis, and lastly altering osteoclast formation in vitro. In addition, knockdown and overexpression of GSTP1 in vivo also altered bone loss outcomes in the OVX mice model. In general, this study identified a new mechanism by which GSTP1 regulates osteoclastogenesis, and it is evident that the cell fate of osteoclasts is controlled by GSTP1-mediated S-glutathionylation via a redox-autophagy cascade.


Assuntos
Glutationa Transferase , Osteogênese , Animais , Camundongos , Fosforilação , Fatores de Transcrição , Autofagia , Oxirredução
11.
J Nanobiotechnology ; 21(1): 14, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36642728

RESUMO

Tendon-bone insertion (TBI) injuries, such as anterior cruciate ligament injury and rotator cuff injury, are the most common soft tissue injuries. In most situations, surgical tendon/ligament reconstruction is necessary for treating such injuries. However, a significant number of cases failed because healing of the enthesis occurs through scar tissue formation rather than the regeneration of transitional tissue. In recent years, the therapeutic potential of mesenchymal stem cells (MSCs) has been well documented in animal and clinical studies, such as chronic paraplegia, non-ischemic heart failure, and osteoarthritis of the knee. MSCs are multipotent stem cells, which have self-renewability and the ability to differentiate into a wide variety of cells such as chondrocytes, osteoblasts, and adipocytes. Numerous studies have suggested that MSCs could promote angiogenesis and cell proliferation, reduce inflammation, and produce a large number of bioactive molecules involved in the repair. These effects are likely mediated by the paracrine mechanisms of MSCs, particularly through the release of exosomes. Exosomes, nano-sized extracellular vesicles (EVs) with a lipid bilayer and a membrane structure, are naturally released by various cell types. They play an essential role in intercellular communication by transferring bioactive lipids, proteins, and nucleic acids, such as mRNAs and miRNAs, between cells to influence the physiological and pathological processes of recipient cells. Exosomes have been shown to facilitate tissue repair and regeneration. Herein, we discuss the prospective applications of MSC-derived exosomes in TBI injuries. We also review the roles of MSC-EVs and the underlying mechanisms of their effects on promoting tendon-bone healing. At last, we discuss the present challenges and future research directions.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Lesões do Manguito Rotador , Animais , Exossomos/metabolismo , Tendões/metabolismo , MicroRNAs/metabolismo
12.
Am J Sports Med ; 50(14): 3844-3855, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36326437

RESUMO

BACKGROUND: Anterior cruciate ligament (ACL) injuries and bone tunnel enlargement (BTE) after ACL reconstruction (ACLR) remain frequent issues. Bone dust (BD) produced by tunnel preparation with osteogenic ability and reverse drilling (RD), an easy compaction technique, make it accessible to enhance tendon-bone healing in the clinic. HYPOTHESIS: RD and BD synergistically promote tendon-bone healing by improving peritunnel bone and preventing BTE in femurs. STUDY DESIGN: Controlled laboratory study. METHODS: In total, 96 New Zealand White rabbits underwent ACLR. The semitendinosus tendon was freed before medial parapatellar arthrotomy. After the native ACL was transected, bone tunnels were prepared through the footprint of the native ACL. All animals were randomly assigned to 1 of 4 groups according to different tunnel preparation methods: group 1 (irrigation after extraction drilling [ED]; control group), group 2 (irrigation after RD), group 3 (no irrigation after ED), and group 4 (no irrigation after RD). BD was harvested by irrigating tunnels and was characterized by morphology and size. The specimens underwent microarchitectural, histological, and biomechanical evaluations at 4, 8, and 12 weeks postoperatively. RESULTS: Micro-computed tomography demonstrated more peritunnel bone and less BTE in the femurs of group 4 compared with the other groups. Histologically, BD possessed osteogenic activity in bone tunnels postoperatively. Meanwhile, group 4 regenerated a higher amount of the tendon-bone interface and more peritunnel bone than group 1. Biomechanically, group 4 showed higher failure loads and stiffness than group 1. However, peritunnel bone loss, active osteoclasts, and significant BTE were found in the femurs of group 1 and group 3 at 12 weeks postoperatively, while no strong correlation was found between BTE and inflammatory cytokines. Scanning electron microscopy and particle size analysis suggested that BD produced by ED and RD had no difference in size. CONCLUSION: Tendon-bone healing was facilitated by the synergistic effect of RD and BD in femurs. CLINICAL RELEVANCE: This study provides a more accessible and effective surgical strategy to promote tendon-bone healing after ACLR by increasing peritunnel bone and preventing BTE in femurs.


Assuntos
Reconstrução do Ligamento Cruzado Anterior , Poeira , Animais , Coelhos , Projetos de Pesquisa , Microtomografia por Raio-X
13.
Front Surg ; 9: 965505, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36189385

RESUMO

Objective: To investigate whether preoperative lateral anterior tibial subluxation (LATS) measured from magnetic resonance imaging (MRI) can influence tibial insertion and postoperative sagittal alignment after anterior cruciate ligament reconstructions (ACLRs). Methods: 84 patients who underwent single-bundle ACLRs were retrospectively investigated. Among them, 39 patients (LATS of <6 mm) 23 patients (LATS of ≥6 mm and <10 mm) and 22 patients (excessive LATS of ≥10 mm) were defined as group 1, 2 and 3, respectively. LATS, the position of graft insertion into tibia as ratio of anterior-posterior width (AP ratio) and the sagittal graft angle (SGA) were postoperatively assessed from MRI at 2-year follow-up. Following linear regression analyses were employed. Results: The group 3 exhibited the largest preoperative LATS and remained the most postoperative LATS. Moreover, the group 3 possessed the most posteriorly located tunnel insertion with the largest AP ratio and the most vertical graft orientation. Of all included patients, a moderate correlation was demonstrated between pre- and postoperative LATS (r = 0.635). A low correlation was observed between preoperative LATS and AP ratio (r = 0.300) and a moderate correlation was displayed between AP ratio and SGA (r = 0.656). Conclusion: For ACL injuries with excessive LATS (≥10 mm), most posteriorly located tibial insertion was found out, and worse sagittal alignment containing high residual LATS was associated with more vertical graft orientation following ACLRs.

14.
Front Endocrinol (Lausanne) ; 13: 942878, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35923623

RESUMO

Background: As a valuable blood glucose measurement, HemoglobinA1c (HbA1c) is of great clinical value for diabetes. However, in previous observational studies, studies on its effect on bone mineral density (BMD) have different results. This study aimed to use Mendelian randomization (MR) to assess the effect of HbA1c on bone mineral density and fracture risk, and try to further explore whether this association was achieved through glycemic or non-glycemic factors. Methods: Take HbA1c measurement as exposure, and BMD estimated from quantitative heel ultrasounds (eBMD) and bone fractures as outcomes. Two-Sample MR Analysis was conducted to assess the causal effect of HbA1C on heel BMD and risk fracture. Then, we performed the analysis using two subsets of these variants, one related to glycemic measurement and the other to erythrocyte indices. Results: Genetically increased HbA1C was associated with the lower heel eBMD [odds ratio (OR) 0.91 (95% CI 0.87, 0.96) per %-unit, P = 3 × 10-4(IVW)]. Higher HbA1C was associated with lower heel eBMD when using only erythrocytic variants [OR 0.87 (0.82, 0.93), P=2× 10-5(IVW)]; However, when using only glycemic variants, this casual association does not hold. In further MR analysis, we test the association of erythrocytic traits with heel eBMD. Conclusion: Our study revealed the significant causal effect of HbA1c on eBMD, and this causal link might achieve through non-glycemic pathways (erythrocytic indices).


Assuntos
Densidade Óssea , Fraturas Ósseas , Glicemia , Densidade Óssea/genética , Fraturas Ósseas/genética , Hemoglobinas Glicadas , Humanos , Análise da Randomização Mendeliana , Fatores de Risco
15.
Cell Discov ; 8(1): 60, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35764611

RESUMO

As a critical node for insulin/IGF signaling, insulin receptor substrate 1 (IRS-1) is essential for metabolic regulation. A long and unstructured C-terminal region of IRS-1 recruits downstream effectors for promoting insulin/IGF signals. However, the underlying molecular basis for this remains elusive. Here, we found that the C-terminus of IRS-1 undergoes liquid-liquid phase separation (LLPS). Both electrostatic and hydrophobic interactions were seen to drive IRS-1 LLPS. Self-association of IRS-1, which was mainly mediated by the 301-600 region, drives IRS-1 LLPS to form insulin/IGF-1 signalosomes. Moreover, tyrosine residues of YXXM motifs, which recruit downstream effectors, also contributed to IRS-1 self-association and LLPS. Impairment of IRS-1 LLPS attenuated its positive effects on insulin/IGF-1 signaling. The metabolic disease-associated G972R mutation impaired the self-association and LLPS of IRS-1. Our findings delineate a mechanism in which LLPS of IRS-1-mediated signalosomes serves as an organizing center for insulin/IGF-1 signaling and implicate the role of aberrant IRS-1 LLPS in metabolic diseases.

16.
Front Endocrinol (Lausanne) ; 13: 871380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35546997

RESUMO

Implant-generated particle wears are considered as the major cause for the induction of implant loosening, which is more susceptible to patients with osteoporosis. Monotherapy with parathyroid hormone (PTH) or zoledronate acid (ZOL) has been proven efficient for preventing early-stage periprosthetic osteolysis, while the combination therapy with PTH and ZOL has exerted beneficial effects on the treatment of posterior lumbar vertebral fusion and disuse osteopenia. However, PTH and ZOL still have not been licensed for the treatment of implant loosening to date clinically. In this study, we have explored the effect of single or combined administration with PTH and ZOL on implant loosening in a rat model of osteoporosis. After 12 weeks of ovariectomized surgery, a femoral particle-induced periprosthetic osteolysis model was established. Vehicle, PTH (5 days per week), ZOL (100 mg/kg per week), or combination therapy was utilized for another 6 weeks before sacrifice, followed by micro-CT, histology, mechanical testing, and bone turnover examination. PTH monotherapy or combined PTH with ZOL exerted a protective effect on maintaining implant stability by elevating periprosthetic bone mass and inhibiting pseudomembrane formation. Moreover, an additive effect was observed when combining PTH with ZOL, resulting in better fixation strength, higher periprosthetic bone mass, and less pseudomembrane than PTH monotherapy. Taken together, our results suggested that a combination therapy of PTH and ZOL might be a promising approach for the intervention of early-stage implant loosening in patients with osteoporosis.


Assuntos
Conservadores da Densidade Óssea , Osteólise , Osteoporose , Animais , Conservadores da Densidade Óssea/farmacologia , Conservadores da Densidade Óssea/uso terapêutico , Humanos , Osteólise/etiologia , Osteólise/prevenção & controle , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoporose/prevenção & controle , Hormônio Paratireóideo , Ratos , Ácido Zoledrônico
17.
Arthroscopy ; 38(10): 2852-2860, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35550417

RESUMO

PURPOSE: To investigate whether anterior tibial subluxation obtained from magnetic resonance imaging (MRI) could be a predictor of high-grade rotatory instability for anterior cruciate ligament (ACL) injuries, including acute and chronic cases. METHODS: From September 2016 to August 2018, we retrospectively investigated 163 patients with ACL injuries who subsequently underwent primary ACL reconstruction. Among them, 30 patients with high-grade rotatory instability (grade II/III pivot shift) were included in the high-grade group, and their age and sex were matched 1:2 to low-grade cases (3 months) phases. RESULTS: The high-grade group had a larger anterior tibial subluxation of lateral compartment (8.1 mm vs 5.9 mm; P =.004) than the low-grade group, whereas no significant difference was found in anterior tibial subluxation of medial compartment (P > .05). Moreover, high-grade anterior tibial subluxation of lateral compartment (≥6 mm) was found to be an independent predictor (odds ratio, 12.992; P = .011) associated with concomitant meniscal tears after ACL injuries. Anterior tibial subluxation of lateral compartment demonstrated statistical significance between the two groups when comparing subgroups within 3 months but not beyond 3 months. CONCLUSION: In ACL-injured patients, high-grade anterior tibial subluxation of lateral compartment (≥6 mm) could be a unique predictor of high-grade knee rotatory instability for acute but not chronic injuries. Prolonged time from injury to surgery and lateral meniscus tears were risk factors for high-grade rotatory laxity in chronic patients. LEVEL OF EVIDENCE: Level III, retrospective prognostic trial.


Assuntos
Lesões do Ligamento Cruzado Anterior , Luxações Articulares , Instabilidade Articular , Lesões do Ligamento Cruzado Anterior/complicações , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/cirurgia , Estudos de Casos e Controles , Feminino , Humanos , Luxações Articulares/cirurgia , Instabilidade Articular/complicações , Instabilidade Articular/etiologia , Articulação do Joelho/cirurgia , Imageamento por Ressonância Magnética , Masculino , Estudos Retrospectivos
18.
ACS Appl Mater Interfaces ; 14(12): 14783-14790, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35290029

RESUMO

PbS colloidal quantum dots (CQDs) are emerging as promising candidates for next-generation, low-cost, and high-performance infrared photodetectors. Recently, photomultiplication has been explored to improve the detectivity of CQD infrared photodetectors by doping charge-trapping material into a matrix. However, this relies on remote doping that could influence carrier transfer giving rise to limited photomultiplication. Herein, a charge-self-trapped ZnO layer is prepared by a surface reaction between acid and ZnO. Photogenerated electrons trapped by oxygen vacancy defects at the ZnO surface generate a strong interfacial electrical field and induce large photomultiplication at extremely low bias. A PbS CQD infrared photodiode based on this structure shows a response (R) of 77.0 A·W-1 and specific detectivity of 1.5 × 1011 Jones at 1550 nm under a -0.3 V bias. This self-trapped ZnO layer can be applied to other photodetectors such as perovskite-based devices.

19.
Int J Med Robot ; 18(3): e2369, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35060271

RESUMO

BACKGROUND: Previous articles about MAKO robotic-assisted total hip replacement (THR) were mainly in patients with comparatively normal anatomy. METHODS: From July 2020 to June 2021, we performed MAKO robotic-assisted THR in three hip-fused patients. We assessed the accuracy of prostheses implantation, collected clinical data, and discussed the value of this technique in this kind of patients. RESULT: All three patients achieved good leg length and prostheses position. A patient got femoral artery injury during the surgery. Moreover, she developed a thrombus. All three patients got acceptable Visual Analogue Scale scores and function recovery 6 months later. CONCLUSION: MAKO robotic-assisted THR achieved excellent prosthesis position in hip fused patients. More cases are needed to confirm this advantage. The function recovery was acceptable. Caution should be paid to protect the surrounding abnormal arteries, especially in a limited surgical field.


Assuntos
Artroplastia de Quadril , Prótese de Quadril , Procedimentos Cirúrgicos Robóticos , Feminino , Humanos , Resultado do Tratamento
20.
Eur Spine J ; 31(2): 442-447, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34677679

RESUMO

PURPOSE: Metagenomic next-generation sequencing (mNGS) is a new approach to identify the infecting organism in infectious diseases. Our aim was to evaluate the accuracy of mNGS in determining the etiology of spinal infection. METHODS: In this retrospective study, patients who had a suspected spinal infection and underwent mNGS for diagnosis in our hospital were eligible for inclusion. Samples for mNGS, culture, and histopathological tests were collected surgically or with a CT-guided needle biopsy. Sensitivity and specificity were calculated for mNGS and culture test, using histopathological results as reference. RESULTS: A total of 31 mNGS tests in 30 cases were included. Twenty-six cases were classified as infected, and four cases were considered aseptic. mNGS achieved a specificity of 75.0% [95% confidence interval (CI), 21.9% to 98.7%], sensitivity was 70.3% (95% CI, 49.7% to 85.5%). mNGS was more sensitive than culture at 14.8% (95% CI, 4.9% to 34.6%, P < 0.0001). However, the specificities of mNGS and culture were statistically similar. CONCLUSION: We described here the power of mNGS in the etiological diagnosing of spinal infection. Our study opens the possibility for more extensive use of mNGS techniques in the identification of pathogens in patients with suspected spinal infection.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Metagenômica , Biometria , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Metagenômica/métodos , Estudos Retrospectivos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA