Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 246: 116255, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38795427

RESUMO

Wilson disease (WD) is an inherited disorder characterized by abnormal copper metabolism with complex pathological features. Currently, this mechanism of copper overload-induced hepatic injury remains unclear. In this study, male toxic milk (TX) mice were selected as experimental subjects. Copper levels and biochemical indices were measured by atomic absorption spectroscopy (AAS) and kits. Liver tissue ultrastructure was observed by hematoxylin-eosin (H&E), sirius red staining and transmission electron microscopy. Plasma and liver metabolic profiles of TX mice were characterized by untargeted metabolomics. In addition, the expression of enzymes related to arachidonic acid metabolism in liver tissue was detected by Western blotting. The results showed the excessive copper content, concomitant oxidative stress, and hepatic tissue structural damage in TX mice. Seventy-eight metabolites were significantly different in WD, mainly involved in the metabolism of arachidonic acid, glycerophospholipids, sphingolipids, niacin and nicotinamide, and phenylalanine. Furthermore, the arachidonic acid metabolic pathway is an important pathway involved in WD metabolism. The level of arachidonic acid in the liver of TX mice was significantly lower (p < 0.01) compared to the control group. The expression of cytoplasmic phospholipase A2 (cPLA2) and arachidonic acid 12-lipoxygenase (ALOX12), related to the arachidonic acid metabolic pathway, was significantly different in the liver of TX mice (p < 0.01). Modulation of the arachidonic acid metabolic pathway could be a potential therapeutic strategy to alleviate WD symptoms.


Assuntos
Cobre , Modelos Animais de Doenças , Degeneração Hepatolenticular , Fígado , Metabolômica , Animais , Degeneração Hepatolenticular/metabolismo , Camundongos , Fígado/metabolismo , Masculino , Metabolômica/métodos , Cobre/metabolismo , Ácido Araquidônico/metabolismo , Estresse Oxidativo , Leite/metabolismo
2.
Curr Neurovasc Res ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38629368

RESUMO

BACKGROUND: Gualou is derived from the fruit of Trichosanthes kirilowii Maxim, while Xiebai from the bulbs of Allium macrostemon Bunge. Gualou and Xiebai herb pair (2:1) is widely used in clinical practice to treat atherosclerotic cardiovascular diseases. However, the mechanism underlying its potential activity on atherosclerosis (AS) has not been fully elucidated. METHODS: The extract of Gualou-Xiebai herb pair (GXE) was prepared from Gualou (80 g) and Xiebai (40 g) by continuous refluxing with 50% ethanol for 2 h at 80°C. In vivo, ApoE-/- mice were fed a high-fat diet (HFD) for 10 weeks to induce an AS model, and then the mice were treated with GXE (3, 6, 12 g/kg) or atorvastatin (10 mg/kg) via oral gavage. Besides, RAW264.7 macrophages were stimulated by ox-LDL to establish a foam cell model in vitro. RESULTS: GXE suppressed plaque formation, regulated plasma lipids, and promoted liver lipid clearance in AS mice. In addition, 0.5, 1, and 2 mg/mL GXE significantly reduced the TC and FC levels in ox-LDL (50 µg/mL)-stimulated foam cells. GXE increased cholesterol efflux from the foam cells to ApoA-1 and HDL, and enhanced the protein expressions of ABCA1, ABCG1, and SR-BI, which were reversed by the PPARγ inhibitor. Meanwhile, GXE increased the LCAT levels, decreased the lipid levels and increased the TBA levels in the liver of AS mice. Molecular docking indicated that some compounds in GXE showed favorable binding energy with PPARγ, LCAT and CYP7A1 proteins, especially apigenin-7-O-ß-D-glucoside and quercetin. CONCLUSION: In summary, our results suggested that GXE improved lipid metabolism disorders by enhancing RCT, providing a scientific basis for the clinical use of GXE in AS treatment.

3.
Biochem Biophys Res Commun ; 708: 149788, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38518720

RESUMO

Atherosclerosis (AS) is the underlying cause of many severe vascular diseases and is primarily characterized by abnormal lipid metabolism. Paeonol (Pae), a bioactive compound derived from Paeonia Suffruticosa Andr., is recognized for its significant role in reducing lipid accumulation. Our research objective is to explore the link between lipid buildup in foam cells originating from macrophages and the process of ferroptosis, and explore the effect and mechanism of Pae on inhibiting AS by regulating ferroptosis. In our animal model, ApoE-deficient mice, which were provided with a high-fat regimen to provoke atherosclerosis, were administered Pae. The treatment was benchmarked against simvastatin and ferrostatin-1. The results showed that Pae significantly reduced aortic ferroptosis and lipid accumulation in the mice. In vitro experiments further demonstrated that Pae could decrease lipid accumulation in foam cells induced by oxidized low-density lipoprotein (LDL) and challenged with the ferroptosis inducer erastin. Crucially, the protective effect of Pae against lipid accumulation was dependent on the SIRT1/NRF2/GPX4 pathway, as SIRT1 knockdown abolished this effect. Our findings suggest that Pae may offer a novel therapeutic approach for AS by inhibiting lipid accumulation through the suppression of ferroptosis, mediated by the SIRT1/NRF2/GPX4 pathway. Such knowledge has the potential to inform the creation of novel therapeutic strategies aimed at regulating ferroptosis within the context of atherosclerosis.


Assuntos
Acetofenonas , Aterosclerose , Ferroptose , Animais , Camundongos , Células Espumosas , Fator 2 Relacionado a NF-E2 , Sirtuína 1 , Macrófagos , Aterosclerose/tratamento farmacológico , Transdução de Sinais
4.
Phytomedicine ; 128: 155341, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38518636

RESUMO

BACKGROUND: Atherosclerosis (AS) is a chronic disease characterized by lipid accumulation in the aortic wall and the formation of foam cells overloaded with large lipids inclusions. Currently, Western medicine is primarily used to improve lipid metabolism disorders and reduce inflammatory reactions to delay AS progression, but these medicines come with serious side effects and drug resistance. Gualou-Xiebai (GLXB) is a renowned herb pair that has been proven effective against AS. However, the potential molecular mechanism through which GLXB exerts the anti-atherosclerotic effects of increasing lipophagy in vascular smooth muscle cells (VSMCs) remains unknown. PURPOSE: This study aims to explore the role of lipophagy and the therapeutic mechanism of GLXB in AS. METHODS: UPLC-Q-TOF-MS for the determination of the main components of GLXB-containing serum. An AS mouse model was established by feeding a high-fat diet (HFD) to ApoE-/- mice for 12 weeks. Ultrasonography monitoring was used to confirm the successful establishment of the AS model. Plaque areas and lipid deposition were evaluated using HE staining and aorta imagingafter GLXB treatment. Immunofluorescence staining and Western blotting were utilized to observe the P2RY12 and lipophagy levels in AS mice. VSMCs were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. The degree of lipophagy and the related molecular mechanisms were assessed after treating the VSMCs with GLXB-containing serum or si-P2RY12 transfection. The active components of GLXB-containing serum that act on P2RY12 were screened and verified by molecular docking and dual-luciferase reporter assays. RESULTS: Seventeen components of GLXB were identified in rat serum by UPLC-Q-TOF-MS. GLXB significantly reduced lipid deposition in HFD-fed ApoE-/- mice and ox-LDL-induced VSMCs. GLXB strikingly increased lipophagy levels by downregulating P2RY12, p62, and plin2, upregulating LC3Ⅱ protein expression, and increasing the number of autophagosomes. Notably, the lipophagy inhibitor CQ and the P2RY12 receptor agonist ADPß abolished the GLXB-induced increase in lipophagy. Last, we confirmed that albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin from GLXB significantly inhibited P2RY12. CONCLUSION: GLXB activates lipophagy and inhibits lipid accumulation-associated VSMC-derived foam cell formation through suppressing P2RY12 activation, resulting in anti-atherosclerotic effects. The GLXB components albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin are the potential active effectors against P2RY12.


Assuntos
Aterosclerose , Medicamentos de Ervas Chinesas , Células Espumosas , Músculo Liso Vascular , Receptores Purinérgicos P2Y12 , Animais , Aterosclerose/tratamento farmacológico , Células Espumosas/efeitos dos fármacos , Células Espumosas/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Masculino , Camundongos , Medicamentos de Ervas Chinesas/farmacologia , Receptores Purinérgicos P2Y12/metabolismo , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Ratos , Modelos Animais de Doenças , Autofagia/efeitos dos fármacos , Ratos Sprague-Dawley , Metabolismo dos Lipídeos/efeitos dos fármacos , Aorta/efeitos dos fármacos , Lipoproteínas LDL/metabolismo
5.
J Ethnopharmacol ; 326: 117892, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38350505

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Atherosclerosis (AS) is a chronic vascular ailment characterized by inflammatory and lipid deposition in the arterial wall caused by endothelial injury. Ferroptosis is a novel type of cell death, and endothelial ferroptosis is a significant contributor to the progression of AS. Gualou-Xiebai (GLXB) is a renowned Chinese herb pair that serves a crucial function in treating AS. However, whether the underlying mechanism of GLXB plays a role in anti-atherosclerotic effects by inhibiting ferroptosis in endothelial cells has not been determined. AIM OF THE STUDY: To explore the influence of GLXB on endothelial ferroptosis and determine its underlying mechanism of action in AS. MATERIALS AND METHODS: In ApoE-/- mice, ultrasound was performed in mice fed a high-fat diet (HFD) for 12 weeks to assess the success of AS establishment. Then, ApoE-/- mice were treated with GLXB and Simvastatin (positive control) for 4 weeks. The effects of GLXB on AS pathology were assessed through aorta imaging and hematoxylin-eosin (HE) staining. To confirm the presence of ferroptosis, mitochondrial damage was observed using transmission electron microscope (TEM), along with analysis of free iron and lipid peroxidation levels. In vitro: ox-LDL-induced human vascular endothelial cells (HUVECs) injury and treated with GLXB, the ferroptosis inducer Erastin and an Nrf2 inhibitor ML385. Cell viability was evaluated using the CCK-8 assay in all groups. Flow cytometry was employed to detect lipid peroxidation and intracellular ferrous iron levels. Immunofluorescence staining microscopy verified Nrf2 nuclear translocation. Protein expression were measured by Western blot analysis. RESULTS: GLXB improved atherosclerotic aortic lesions and vascular plaques. GLXB inhibited endothelial injury in the aorta by decreasing the levels of inflammatory factors and adhesion factors, and by decreasing the shedding of endothelial cells. GLXB suppressed ferroptosis in ApoE-/- mice by attenuating mitochondrial damage in ECs, increasing the levels of glutathione (GSH) and superoxide dismutase (SOD) in aortic tissues and down-regulating the levels of levels of lipid peroxide (LPO) and malondialdehyde (MDA). Interestingly, Erastin was used to demonstrate in vitro that GLXB inhibition of ferroptosis attenuated ox-LDL-induced injuring effects on HUVECs that were reversed by Erastin. Mechanistically, GLXB activates the Nrf2 signaling pathway to inhibit ferroptosis by increasing downstream anti-ferroptosis target proteins and promoting the interaction between Nrf2 and SLC7A11. More convincingly, ML385 (Nrf2 inhibitor) reversed the anti-ferroptosis effect of GLXB. CONCLUSION: GLXB inhibits ferroptosis-mediated endothelial cell injury via activating the Nrf2 signaling pathway and further alleviates AS pathological damage.


Assuntos
Aterosclerose , Ferroptose , Lipoproteínas LDL , Humanos , Animais , Camundongos , Células Endoteliais , Fator 2 Relacionado a NF-E2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/metabolismo , Apolipoproteínas E/genética , Ferro/metabolismo
6.
Zhongguo Zhong Yao Za Zhi ; 49(1): 232-242, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403356

RESUMO

This study aimed at investigating the mechanism of Trichosanthis Fructus-Allii Macrostemonis Bulbus(GX) in treating cardiovascular diseases in rats with the syndrome of combined phlegm and stasis. The rat model was established by a high-fat diet, ice-water bath combined with subcutaneous injection of adrenalin hydrochloride, and the syndrome score was determined. The serum samples of rats in the control, model, and GX groups were collected. Ultra-performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS) was employed to analyze the metabolic profiles of the serum samples. The differential metabolites were screened and identified by partial least squares-discriminant analysis(PLS-DA) and orthogonal partial least squares-discriminant analysis(OPLS-DA). The intervention targets of GX-regulated metabolites and their metabolic pathways were searched against MetaboAnalyst. Gene Ontology enrichment was carried out to predict the biological pathways associated with the intervention targets of metabolic pathways. A total of 129 potential biomarkers were detected in the rat model with the syndrome of combined phlegm and stasis via metabolomics, and GX regulated 54 metabolites in several metabolic pathways such as linoleic acid metabolism, sphingolipid metabolism, and tricarboxylic acid cycle. The further screening against MetaboAnalyst showed that GX recovered the levels of nine metabolites associated with cardiovascular diseases with the syndrome of combined phlegm and stasis, which involved 69 targets in the pathways regarding cholesterol metabolism, fatty acid metabolism, inflammatory response, and glucose homeostasis and metabolism. The above-mentioned results suggested that GX can alleviate the symptoms of the rat model of cardiovascular diseases with the syndrome of combined phlegm and stasis by regulating the metabolism of linoleic acid, sphingosine, docosahexaenoic acid, rosemary acid, succinic acid, adenine, L-phenylalanine, L-valine and modulating the biological pathways such as cholesterol metabolism, fatty acid metabolism, inflammatory response, and glucose homeostasis and metabolism.


Assuntos
Doenças Cardiovasculares , Cebolinha-Francesa , Medicamentos de Ervas Chinesas , Ratos , Animais , Doenças Cardiovasculares/tratamento farmacológico , Ácido Linoleico , Cromatografia Líquida de Alta Pressão/métodos , Metabolômica/métodos , Biomarcadores , Colesterol , Glucose
7.
Phytomedicine ; 126: 155447, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394732

RESUMO

BACKGROUD: High comorbidity rates have been reported in patients with atherosclerosis and osteoporosis, posing a serious risk to the health and well-being of elderly patients. To improve and update clinical practice regarding the joint treatment of these two diseases, the common mechanisms of atherosclerosis and osteoporosis need to be clarified. MicroRNAs (miRNAs), are importance molecules in the pathogenesis of human diseases, including in cardiovascular and orthopedic fields. They have garnered interest as potential targets for novel therapeutic strategies. However, the key miRNAs involved in atherosclerosis and osteoporosis and their precise regulation mechanisms remain unknown. Paeonol (Pae), an active ingredient in Cortex Moutan, has shown promising results in improving both lipid and bone metabolic abnormalities. However, it is uncertain whether this agent can exert a cotherapeutic effect on atherosclerosis and osteoporosis. OBJECTIVE: This study aimed to screen important shared miRNAs in atherosclerotic and osteoporotic complications, and explore the mechanism of the protective effects of Pae against atherosclerosis and osteoporosis in high-fat diet (HFD)-fed ApoE-/- mice. METHODS: An experimental atherosclerosis and osteoporosis model was established in 40-week-old HFD ApoE-/- mice. Various techniques such as Oil Red O staining, HE staining and micro-CT were used to confirm the co-occurrence of these two diseases and efficacy of Pae in addition to the associated biochemical changes. Bioinformatics was used to screen key miRNAs in the atherosclerosis and osteoporosis model, and gene involvement was assessed through serum analyses, qRT-PCR, and western blot. To investigate the effect of Pae on the modulation of the miR let-7g/HMGA2/CEBPß pathway, Raw 264.7 cells were cocultured with bone marrow mesenchymal stem cells (BMSCs) and treated with an miR let-7g mimic/inhibitor. RESULTS: miR let-7g identified using bioinformatics was assessed to evaluate its participation in atherosclerosis-osteoporosis. Experimental analysis showed reduced miR let-7g levels in the atherosclerosis-osteoporosis mice model. Moreover, miR let-7g was required for BMSC - Raw 264.7 cell crosstalk, thereby promoting foam cell formation and adipocyte differentiation. Treatment with Pae significantly reduced plaque accumulation and foam cell number in the aorta while increasing bone density and improving trabecular bone microarchitecture in HFD ApoE-/- mice. Pae also increased the level of miR let-7g in the bloodstream of model mice. In vitro studies, Pae enhanced miR let-7g expression in BMSCs, thereby suppressing the HMGA2/CEBPß pathway to prevent the formation of foam cells and differentiation of adipocytes induced by oxidized low-density lipoprotein (ox-LDL). CONCLUSION: The study results suggested that miR let-7g participates in atherosclerosis -osteoporosis regulation and that Pae acts as a potential therapeutic agent for preventing atherosclerosis-osteoporosis through regulatory effects on the miR let-7g/HMGA2/CEBPß pathway to hinder foam cell formation and adipocyte differentiation.


Assuntos
Acetofenonas , Adipogenia , Aterosclerose , Células Espumosas , MicroRNAs , Osteoporose , Animais , Camundongos , Acetofenonas/farmacologia , Acetofenonas/uso terapêutico , Apolipoproteínas E/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Diferenciação Celular , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoporose/tratamento farmacológico , Osteoporose/metabolismo , Adipogenia/genética
8.
Huan Jing Ke Xue ; 45(1): 407-416, 2024 Jan 08.
Artigo em Chinês | MEDLINE | ID: mdl-38216490

RESUMO

To investigate the impact of pyrite mining on the heavy metal pollution in the surrounding soil in Tongling City, 50 surface soil and sediment samples were collected from mining fields, farmland, forests, villages, and the river. The contents of Zn, Cr, Cu, Pb, Ni, Cd, and As in soils and sediments were analyzed. Then, the spatial distribution characteristics of heavy metals in soil were analyzed, and the degree of heavy metal pollution and potential ecological risk level were assessed. Finally, the sources of soil heavy metal pollution were identified. In general, the soil in the study area was weakly acidic (average pH=6.32), and the contents of other heavy metals except Ni exceeded the background values of the soil in Tongling City. Moreover, Ni and Cd were enriched in the river sediments. According to the Nemerow pollution index, Pb and As reached heavy pollution levels, Cu and Cd reached moderate pollution levels, and other elements belonged to light or non-pollution levels. The comprehensive pollution index of different land types was ranked in the order of mining field > river > forest > farmland > village. Mining fields and the river were heavily polluted, forest land was moderately polluted, and farmland and villages were mainly mildly polluted. Pb, As, and Cd belonged to the medium ecological risk category. The contribution rates of the potential ecological risk index were 33.27%, 27.39%, and 20.22%, which were much higher than the other four elements. The ranking results of the potential ecological risk index of different land types was the same as that of the comprehensive pollution index. Mining fields and the river were at a high-risk level, forest land reached moderate risk, and the rest were at a slight risk level. The consistent results of correlation analysis, principal component analysis (PCA), and positive definite matrix factor analysis (PMF) indicated that Zn, Cu, Pb, Cd, and As were mainly derived from pyrite mining activities, Cr mainly came from the parent material and agricultural production, and Ni was mainly affected by soil-forming parent material and pyrite mining activities.

9.
Molecules ; 29(1)2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38202844

RESUMO

Atherosclerosis is a chronic inflammatory disease leading to various vascular diseases. Vascular smooth muscle cell (VSMC) senescence promotes atherosclerotic inflammation and the formation of plaque necrosis core, in part through telomere damage mediated by a high-fat diet. Our previous research found that paeonol, a potential anti-inflammatory agent extracted from Cortex Moutan, could significantly improve VSMCs dysfunction. However, the impact of paeonol on the senescence of VSMCs remains unexplored. This study presents the protective effects of paeonol on VSMCs senescence, and its potential activity in inhibiting the progression of atherosclerosis in vivo and in vitro. Sirtuin 1 (SIRT1) is a nuclear deacetylase involved in cell proliferation, senescence, telomere damage, and inflammation. Here, SIRT1 was identified as a potential target of paeonol having anti-senescence and anti-atherosclerosis activity. Mechanistic studies revealed that paeonol binds directly to SIRT1 and then activates the SIRT1/P53/TRF2 pathway to inhibit VSMCs senescence. Our results suggested that SIRT1-mediated VSMCs senescence is a promising druggable target for atherosclerosis, and that pharmacological modulation of the SIRT1/P53/TRF2 signaling pathway by paeonol is of potential benefit for patients with atherosclerosis.


Assuntos
Acetofenonas , Aterosclerose , Sirtuínas , Humanos , Sirtuína 1 , Músculo Liso Vascular , Proteína Supressora de Tumor p53 , Aterosclerose/tratamento farmacológico , Inflamação , Transdução de Sinais
10.
Zhongguo Gu Shang ; 37(1): 33-44, 2024 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-38286449

RESUMO

OBJECTIVE: To observe the cage subsidence after oblique lateral interbody fusion (OLIF) for lumbar spondylosis, summarize the characteristics of the cage subsidence, analyze causes, and propose preventive measures. METHODS: The data of 144 patients of lumbar spine lesions admitted to our hospital from October 2015 to December 2018 were retrospectively analyzed. There were 43 males and 101 females, and the age ranged from 20 to 81 years old, with an average of (60.90±10.06) years old. Disease types:17 patients of lumbar intervertebral disc degenerative disease, 12 patients of giant lumbar disc herniation, 5 patients of discogenic low back pain, 33 patients of lumbar spinal stenosis, 26 patients of lumbar degenerative spondylolisthesis, 28 patients of lumbar spondylolisthesis with spondylolisthesis, 11 patients of adjacent vertebral disease after lumbar internal fixation, 7 patients of primary spondylitis in the inflammatory outcome stage, and 5 patients of lumbar degenerative scoliosis. Preoperative dual-energy X-ray bone mineral density examination showed 57 patients of osteopenia or osteoporosis, and 87 patients of normal bone density. The number of fusion segments:124 patients of single-segment, 11 patients of two-segment, 8 patients of three-segment, four-segment 1 patient. There were 40 patients treated by stand-alone OLIF, and 104 patients by OLIF combined with posterior pedicle screw. Observed the occurrence of fusion cage settlement after operation, conducted monofactor analysis on possible risk factors, and observed the influence of fusion cage settlement on clinical results. RESULTS: All operations were successfully completed, the median operation time was 99 min, and the median intraoperative blood loss was 106 ml. Intraoperative endplate injury occurred in 30 patients and vertebral fracture occurred in 5 patients. The mean follow-up was (14.57±7.14) months from 6 to 30 months. During the follow-up, except for the patients of primary lumbar interstitial inflammation and some patients of lumbar spondylolisthesis with spondylolisthesis, the others all had different degrees of cage subsidence. Cage subsidence classification:119 patients were normal subsidence, and 25 patients were abnormal subsidence (23 patients were gradeⅠ, and 2 patients were gradeⅡ). There was no loosening or rupture of the pedicle screw system. The height of the intervertebral space recovered from the preoperative average (9.48±1.84) mm to the postoperative average (12.65±2.03) mm, and the average (10.51±1.81) mm at the last follow-up. There were statistical differences between postoperative and preoperative, and between the last follow-up and postoperative. The interbody fusion rate was 94.4%. The low back pain VAS decreased from the preoperative average (6.55±2.2 9) to the last follow-up (1.40±0.82), and there was statistically significant different. The leg pain VAS decreased from the preoperative average (4.72±1.49) to the final follow-up (0.60±0.03), and the difference was statistically significant (t=9.13, P<0.000 1). The ODI index recovered from the preoperative average (38.50±6.98)% to the latest follow-up (11.30±3.27)%, and there was statistically significant different. The complication rate was 31.3%(45/144), and the reoperation rate was 9.72%(14/144). Among them, 8 patients were reoperated due to fusion cage subsidence or displacement, accounting for 57.14%(8/14) of reoperation. The fusion cage subsidence in this group had obvious characteristics. The monofactor analysis showed that the number of abnormal subsidence patients in the osteopenia or osteoporosis group, Stand-alone OLIF group, 2 or more segments fusion group, and endplate injury group was higher than that in the normal bone mass group, OLIF combined with pedicle screw fixation group, single segment fusion group, and no endplate injury group, and the comparison had statistical differences. CONCLUSION: Cage subsidence is a common phenomenon after OLIF surgery. Preoperative osteopenia or osteoporosis, Stand-alone OLIF, 2 or more segments of fusion and intraoperative endplate injury may be important factors for postoperative fusion cage subsidence. Although there is no significant correlation between the degree of cage subsidence and clinical symptoms, there is a risk of cage migration, and prevention needs to be strengthened to reduce serious complications caused by fusion of cage subsidence, including reoperation.


Assuntos
Doenças Ósseas Metabólicas , Degeneração do Disco Intervertebral , Deslocamento do Disco Intervertebral , Dor Lombar , Osteoporose , Escoliose , Fusão Vertebral , Espondilolistese , Masculino , Feminino , Humanos , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Espondilolistese/cirurgia , Estudos Retrospectivos , Dor Lombar/etiologia , Vértebras Lombares/cirurgia , Fusão Vertebral/efeitos adversos , Fusão Vertebral/métodos , Osteoporose/etiologia , Resultado do Tratamento
11.
J Am Chem Soc ; 146(2): 1701-1709, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38157406

RESUMO

Mesoporous materials with crystalline frameworks have been widely explored in many fields due to their unique structure and crystalline feature, but accurate manipulations over crystalline scaffolds, mainly composed of uncontrolled polymorphs, are still lacking. Herein, we explored a controlled crystallization-driven monomicelle assembly approach to construct a type of uniform mesoporous TiO2 particles with atomically aligned single-crystal frameworks. The resultant mesoporous TiO2 single-crystal particles possess an angular shape ∼80 nm in diameter, good mesoporosity (a high surface area of 112 m2 g-1 and a mean pore size at 8.3 nm), and highly oriented anatase frameworks. By adjusting the evaporation rate during assembly, such a facile solution-processed strategy further enables the regulation of the particle size and mesopore size without the destruction of the oriented crystallites. Such a combination of ordered mesoporosity and crystalline orientation provides both effective mass and charge transportation, leading to a significant increase in the hydrogen generation rate. A maximum hydrogen evolution rate of 12.5 mmol g-1 h-1 can be realized, along with great stability under solar light. Our study is envisaged to extend the possibility of mesoporous single crystal growth to a range of functional ceramics and semiconductors toward advanced applications.

12.
Rev. Assoc. Med. Bras. (1992, Impr.) ; 67(9): 1251-1255, Sept. 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1351480

RESUMO

SUMMARY OBJECTIVE: To investigate the associations of high-mobility group box 1 and its specific receptor, receptor for advanced glycation end products with acute lung injury in patients with acute aortic dissection. METHODS: A total of 96 acute aortic dissection patients were divided into acute aortic dissection with acute lung injury group (38 cases) and acute aortic dissection without acute lung injury group (58 cases), according to partial pressure of oxygen/fraction of inspired oxygen. In addition, 44 healthy individuals were selected for the control group. The blood samples were taken. The serum high-mobility group box 1 and receptor for advanced glycation end products levels were detected by enzyme-linked immunosorbent assay, and the partial pressure of oxygen/fraction of inspired oxygen was measured. RESULTS: 24 h after admission, the high-mobility group box 1 and receptor for advanced glycation end products levels in acute aortic dissection with acute lung injury and acute aortic dissection without acute lung injury groups were significantly higher than those in the control group, respectively (p<0.05), and each index in acute aortic dissection with acute lung injury group was significantly higher than that in acute aortic dissection without acute lung injury group (p<0.05). At each time point within 96 h after admission, compared with acute aortic dissection without acute lung injury group, in acute aortic dissection with acute lung injury group, the high-mobility group box 1 and receptor for advanced glycation end products levels were increased, respectively, and the partial pressure of oxygen/fraction of inspired oxygen was decreased. The correlation analysis showed that, in acute aortic dissection patients, the high-mobility group box 1 and receptor for advanced glycation end products levels were negatively correlated with partial pressure of oxygen/fraction of inspired oxygen, respectively (p<0.05). CONCLUSIONS: The serum high-mobility group box 1 and receptor for advanced glycation end products levels may be associated with the occurrence of acute lung injury in acute aortic dissection patients. Monitoring the high-mobility group box 1 and receptor for advanced glycation end products levels can evaluate the risk of acute aortic dissection with acute lung injury.


Assuntos
Humanos , Proteína HMGB1/metabolismo , Lesão Pulmonar Aguda/etiologia , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Dissecção Aórtica , Produtos Finais de Glicação Avançada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA