Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Br J Clin Pharmacol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38981672

RESUMO

AIMS: Prescribing of antidepressant and antipsychotic drugs in general populations has increased in the United Kingdom, but prescribing trends in people with type 2 diabetes (T2D) have not previously been investigated. The aim of this study was to describe time trends in annual prevalence of antidepressant and antipsychotic drug prescribing in adult patients with T2D. METHODS: We conducted repeated annual cross-sectional analysesof a population-based diabetes registry with 99% coverage, derived from primary and secondary care data in Scotland, from 2004 to 2021. For each cross-sectional calendar year time period, we calculated the prevalence of antidepressant and antipsychotic drug prescribing, overall and by sociodemographic characteristics and drug subtype. RESULTS: The number of patients with a T2D diagnosis in Scotland increased from 161 915 in 2004 to 309 288 in 2021. Prevalence of antidepressant and antipsychotic prescribing in patients with T2D increased markedly between 2004 and 2021 (from 20.0 per 100 person-years to 33.3 per 100 person-years and from 2.8 per 100 person-years to 4.7 per 100 person-years, respectively). We observed this pattern for all drug subtypes except for first-generation antipsychotics, prescribing of which remained largely stable. The degree of increase, as well as the overall prevalence of prescribing, differed by age, sex, socioeconomic status and subtype of drug class. CONCLUSIONS: There has been a marked increase in the prevalence of antidepressant and antipsychotic prescribing in patients with T2D in Scotland. Further research should identify the reasons for this increase, including indication for use and the extent to which this reflects increases in incident prescribing rather than increased duration.

2.
Int J Biol Macromol ; 269(Pt 2): 131878, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692530

RESUMO

Excessive accumulation of exudate from wounds often causes infection and hinders skin regeneration. To handle wound exudate quickly and prevent infection, we developed an antibacterial Janus nanofibrous dressing with a unidirectional water-transport function. The dressing consists of a hydrophilic chitosan aerogel (CS-A) as the outer layer and a hydrophobic laurylated chitosan (La-CS) nanofibrous membrane as the inner layer. These dressings achieved excellent liquid absorption performance (2987.8 ±â€¯123.5 %), air and moisture permeability (997.8 ±â€¯23.1 g/m2/day) and mechanical strength (5.1 ±â€¯2.6 MPa). This performance was obtained by adjusting the density of CS-A and the thickness of the La-CS membrane. Moreover, the dressing did not induce significant toxicity to cells and can prevent bacterial aggregation and infection at the wound site. Animal experiments showed that the dressing can shorten the inflammatory phase, enhance blood vessel generation, and accelerate collagen deposition, thus promoting wound healing. Overall, these results suggest that this Janus dressing is a promising material for clinical wound care.


Assuntos
Antibacterianos , Bandagens , Quitosana , Nanofibras , Água , Cicatrização , Quitosana/química , Quitosana/farmacologia , Cicatrização/efeitos dos fármacos , Nanofibras/química , Antibacterianos/farmacologia , Antibacterianos/química , Animais , Água/química , Camundongos , Interações Hidrofóbicas e Hidrofílicas , Permeabilidade , Ratos , Staphylococcus aureus/efeitos dos fármacos , Masculino
3.
Comput Biol Med ; 172: 108220, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489990

RESUMO

INTRODUCTION: Uterine contractions during labour constrict maternal blood flow and oxygen delivery to the developing baby, causing transient hypoxia. While most babies are physiologically adapted to withstand such intrapartum hypoxia, those exposed to severe hypoxia or with poor physiological reserves may experience neurological injury or death during labour. Cardiotocography (CTG) monitoring was developed to identify babies at risk of hypoxia by detecting changes in fetal heart rate (FHR) patterns. CTG monitoring is in widespread use in intrapartum care for the detection of fetal hypoxia, but the clinical utility is limited by a relatively poor positive predictive value (PPV) of an abnormal CTG and significant inter and intra observer variability in CTG interpretation. Clinical risk and human factors may impact the quality of CTG interpretation. Misclassification of CTG traces may lead to both under-treatment (with the risk of fetal injury or death) or over-treatment (which may include unnecessary operative interventions that put both mother and baby at risk of complications). Machine learning (ML) has been applied to this problem since early 2000 and has shown potential to predict fetal hypoxia more accurately than visual interpretation of CTG alone. To consider how these tools might be translated for clinical practice, we conducted a review of ML techniques already applied to CTG classification and identified research gaps requiring investigation in order to progress towards clinical implementation. MATERIALS AND METHOD: We used identified keywords to search databases for relevant publications on PubMed, EMBASE and IEEE Xplore. We used Preferred Reporting Items for Systematic Review and Meta-Analysis for Scoping Reviews (PRISMA-ScR). Title, abstract and full text were screened according to the inclusion criteria. RESULTS: We included 36 studies that used signal processing and ML techniques to classify CTG. Most studies used an open-access CTG database and predominantly used fetal metabolic acidosis as the benchmark for hypoxia with varying pH levels. Various methods were used to process and extract CTG signals and several ML algorithms were used to classify CTG. We identified significant concerns over the practicality of using varying pH levels as the CTG classification benchmark. Furthermore, studies needed to be more generalised as most used the same database with a low number of subjects for an ML study. CONCLUSION: ML studies demonstrate potential in predicting fetal hypoxia from CTG. However, more diverse datasets, standardisation of hypoxia benchmarks and enhancement of algorithms and features are needed for future clinical implementation.


Assuntos
Cardiotocografia , Trabalho de Parto , Feminino , Humanos , Gravidez , Cardiotocografia/métodos , Hipóxia Fetal/diagnóstico , Frequência Cardíaca Fetal/fisiologia , Contração Uterina
4.
J Am Med Inform Assoc ; 31(2): 445-455, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38062850

RESUMO

OBJECTIVE: Due to heterogeneity and limited medical data in primary healthcare services (PHS), assessing the psychological risk of type 2 diabetes mellitus (T2DM) patients in PHS is difficult. Using unsupervised contrastive pre-training, we proposed a deep learning framework named depression and anxiety prediction (DAP) to predict depression and anxiety in T2DM patients. MATERIALS AND METHODS: The DAP model consists of two sub-models. Firstly, the pre-trained model of DAP used unlabeled discharge records of 85 085 T2DM patients from the First Affiliated Hospital of Nanjing Medical University for unsupervised contrastive learning on heterogeneous electronic health records (EHRs). Secondly, the fine-tuned model of DAP used case-control cohorts (17 491 patients) selected from 149 596 T2DM patients' EHRs in the Nanjing Health Information Platform (NHIP). The DAP model was validated in 1028 patients from PHS in NHIP. Evaluation included receiver operating characteristic area under the curve (ROC-AUC) and precision-recall area under the curve (PR-AUC), and decision curve analysis (DCA). RESULTS: The pre-training step allowed the DAP model to converge at a faster rate. The fine-tuned DAP model significantly outperformed the baseline models (logistic regression, extreme gradient boosting, and random forest) with ROC-AUC of 0.91±0.028 and PR-AUC of 0.80±0.067 in 10-fold internal validation, and with ROC-AUC of 0.75 ± 0.045 and PR-AUC of 0.47 ± 0.081 in external validation. The DCA indicate the clinical potential of the DAP model. CONCLUSION: The DAP model effectively predicted post-discharge depression and anxiety in T2DM patients from PHS, reducing data fragmentation and limitations. This study highlights the DAP model's potential for early detection and intervention in depression and anxiety, improving outcomes for diabetes patients.


Assuntos
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/diagnóstico , Registros Eletrônicos de Saúde , Assistência ao Convalescente , Depressão , Aprendizado de Máquina , Alta do Paciente , Ansiedade
5.
Front Digit Health ; 5: 1186208, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38090654

RESUMO

Introduction: Linking free-text addresses to unique identifiers in a structural address database [the Ordnance Survey unique property reference number (UPRN) in the United Kingdom (UK)] is a necessary step for downstream geospatial analysis in many digital health systems, e.g., for identification of care home residents, understanding housing transitions in later life, and informing decision making on geographical health and social care resource distribution. However, there is a lack of open-source tools for this task with performance validated in a test data set. Methods: In this article, we propose a generalisable solution (A Framework for Linking free-text Addresses to Ordnance Survey UPRN database, FLAP) based on a machine learning-based matching classifier coupled with a fuzzy aligning algorithm for feature generation with better performance than existing tools. The framework is implemented in Python as an Open Source tool (available at Link). We tested the framework in a real-world scenario of linking individual's (n=771,588) addresses recorded as free text in the Community Health Index (CHI) of National Health Service (NHS) Tayside and NHS Fife to the Unique Property Reference Number database (UPRN DB). Results: We achieved an adjusted matching accuracy of 0.992 in a test data set randomly sampled (n=3,876) from NHS Tayside and NHS Fife CHI addresses. FLAP showed robustness against input variations including typographical errors, alternative formats, and partially incorrect information. It has also improved usability compared to existing solutions allowing the use of a customised threshold of matching confidence and selection of top n candidate records. The use of machine learning also provides better adaptability of the tool to new data and enables continuous improvement. Discussion: In conclusion, we have developed a framework, FLAP, for linking free-text UK addresses to the UPRN DB with good performance and usability in a real-world task.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38083272

RESUMO

Fetal hypoxia can cause damaging consequences on babies' such as stillbirth and cerebral palsy. Cardiotocography (CTG) has been used to detect intrapartum fetal hypoxia during labor. It is a non-invasive machine that measures the fetal heart rate and uterine contractions. Visual CTG suffers inconsistencies in interpretations among clinicians that can delay interventions. Machine learning (ML) showed potential in classifying abnormal CTG, allowing automatic interpretation. In the absence of a gold standard, researchers used various surrogate biomarkers to classify CTG, where some were clinically irrelevant. We proposed using Apgar scores as the surrogate benchmark of babies' ability to recover from birth. Apgar scores measure newborns' ability to recover from active uterine contraction, which measures appearance, pulse, grimace, activity and respiration. The higher the Apgar score, the healthier the baby is.We employ signal processing methods to pre-process and extract validated features of 552 raw CTG. We also included CTG-specific characteristics as outlined in the NICE guidelines. We employed ML techniques using 22 features and measured performances between ML classifiers. While we found that ML can distinguish CTG with low Apgar scores, results for the lowest Apgar scores, which are rare in the dataset we used, would benefit from more CTG data for better performance. We need an external dataset to validate our model for generalizability to ensure that it does not overfit a specific population.Clinical Relevance- This study demonstrated the potential of using a clinically relevant benchmark for classifying CTG to allow automatic early detection of hypoxia to reduce decision-making time in maternity units.


Assuntos
Doenças do Recém-Nascido , Trabalho de Parto , Lactente , Gravidez , Recém-Nascido , Feminino , Humanos , Cardiotocografia/métodos , Hipóxia Fetal/diagnóstico , Contração Uterina , Hipóxia/diagnóstico
7.
Bioinformatics ; 39(12)2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-38001031

RESUMO

MOTIVATION: Methods for concept recognition (CR) in clinical texts have largely been tested on abstracts or articles from the medical literature. However, texts from electronic health records (EHRs) frequently contain spelling errors, abbreviations, and other nonstandard ways of representing clinical concepts. RESULTS: Here, we present a method inspired by the BLAST algorithm for biosequence alignment that screens texts for potential matches on the basis of matching k-mer counts and scores candidates based on conformance to typical patterns of spelling errors derived from 2.9 million clinical notes. Our method, the Term-BLAST-like alignment tool (TBLAT) leverages a gold standard corpus for typographical errors to implement a sequence alignment-inspired method for efficient entity linkage. We present a comprehensive experimental comparison of TBLAT with five widely used tools. Experimental results show an increase of 10% in recall on scientific publications and 20% increase in recall on EHR records (when compared against the next best method), hence supporting a significant enhancement of the entity linking task. The method can be used stand-alone or as a complement to existing approaches. AVAILABILITY AND IMPLEMENTATION: Fenominal is a Java library that implements TBLAT for named CR of Human Phenotype Ontology terms and is available at https://github.com/monarch-initiative/fenominal under the GNU General Public License v3.0.


Assuntos
Algoritmos , Idioma , Humanos , Alinhamento de Sequência , Registros Eletrônicos de Saúde , Publicações
8.
Front Digit Health ; 5: 1184919, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37840686

RESUMO

Background: Natural language processing (NLP) has the potential to automate the reading of radiology reports, but there is a need to demonstrate that NLP methods are adaptable and reliable for use in real-world clinical applications. Methods: We tested the F1 score, precision, and recall to compare NLP tools on a cohort from a study on delirium using images and radiology reports from NHS Fife and a population-based cohort (Generation Scotland) that spans multiple National Health Service health boards. We compared four off-the-shelf rule-based and neural NLP tools (namely, EdIE-R, ALARM+, ESPRESSO, and Sem-EHR) and reported on their performance for three cerebrovascular phenotypes, namely, ischaemic stroke, small vessel disease (SVD), and atrophy. Clinical experts from the EdIE-R team defined phenotypes using labelling techniques developed in the development of EdIE-R, in conjunction with an expert researcher who read underlying images. Results: EdIE-R obtained the highest F1 score in both cohorts for ischaemic stroke, ≥93%, followed by ALARM+, ≥87%. The F1 score of ESPRESSO was ≥74%, whilst that of Sem-EHR is ≥66%, although ESPRESSO had the highest precision in both cohorts, 90% and 98%. For F1 scores for SVD, EdIE-R scored ≥98% and ALARM+ ≥90%. ESPRESSO scored lowest with ≥77% and Sem-EHR ≥81%. In NHS Fife, F1 scores for atrophy by EdIE-R and ALARM+ were 99%, dropping in Generation Scotland to 96% for EdIE-R and 91% for ALARM+. Sem-EHR performed lowest for atrophy at 89% in NHS Fife and 73% in Generation Scotland. When comparing NLP tool output with brain image reads using F1 scores, ALARM+ scored 80%, outperforming EdIE-R at 66% in ischaemic stroke. For SVD, EdIE-R performed best, scoring 84%, with Sem-EHR 82%. For atrophy, EdIE-R and both ALARM+ versions were comparable at 80%. Conclusions: The four NLP tools show varying F1 (and precision/recall) scores across all three phenotypes, although more apparent for ischaemic stroke. If NLP tools are to be used in clinical settings, this cannot be performed "out of the box." It is essential to understand the context of their development to assess whether they are suitable for the task at hand or whether further training, re-training, or modification is required to adapt tools to the target task.

9.
Int J Med Inform ; 175: 105088, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37156169

RESUMO

OBJECTIVE: Disease comorbidity is a major challenge in healthcare affecting the patient's quality of life and costs. AI-based prediction of comorbidities can overcome this issue by improving precision medicine and providing holistic care. The objective of this systematic literature review was to identify and summarise existing machine learning (ML) methods for comorbidity prediction and evaluate the interpretability and explainability of the models. MATERIALS AND METHODS: The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) framework was used to identify articles in three databases: Ovid Medline, Web of Science and PubMed. The literature search covered a broad range of terms for the prediction of disease comorbidity and ML, including traditional predictive modelling. RESULTS: Of 829 unique articles, 58 full-text papers were assessed for eligibility. A final set of 22 articles with 61 ML models was included in this review. Of the identified ML models, 33 models achieved relatively high accuracy (80-95%) and AUC (0.80-0.89). Overall, 72% of studies had high or unclear concerns regarding the risk of bias. DISCUSSION: This systematic review is the first to examine the use of ML and explainable artificial intelligence (XAI) methods for comorbidity prediction. The chosen studies focused on a limited scope of comorbidities ranging from 1 to 34 (mean = 6), and no novel comorbidities were found due to limited phenotypic and genetic data. The lack of standard evaluation for XAI hinders fair comparisons. CONCLUSION: A broad range of ML methods has been used to predict the comorbidities of various disorders. With further development of explainable ML capacity in the field of comorbidity prediction, there is a significant possibility of identifying unmet health needs by highlighting comorbidities in patient groups that were not previously recognised to be at risk for particular comorbidities.


Assuntos
Inteligência Artificial , Qualidade de Vida , Humanos , Aprendizado de Máquina , Comorbidade , Definição da Elegibilidade
10.
BMC Med Inform Decis Mak ; 23(1): 86, 2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147628

RESUMO

BACKGROUND: Computational text phenotyping is the practice of identifying patients with certain disorders and traits from clinical notes. Rare diseases are challenging to be identified due to few cases available for machine learning and the need for data annotation from domain experts. METHODS: We propose a method using ontologies and weak supervision, with recent pre-trained contextual representations from Bi-directional Transformers (e.g. BERT). The ontology-driven framework includes two steps: (i) Text-to-UMLS, extracting phenotypes by contextually linking mentions to concepts in Unified Medical Language System (UMLS), with a Named Entity Recognition and Linking (NER+L) tool, SemEHR, and weak supervision with customised rules and contextual mention representation; (ii) UMLS-to-ORDO, matching UMLS concepts to rare diseases in Orphanet Rare Disease Ontology (ORDO). The weakly supervised approach is proposed to learn a phenotype confirmation model to improve Text-to-UMLS linking, without annotated data from domain experts. We evaluated the approach on three clinical datasets, MIMIC-III discharge summaries, MIMIC-III radiology reports, and NHS Tayside brain imaging reports from two institutions in the US and the UK, with annotations. RESULTS: The improvements in the precision were pronounced (by over 30% to 50% absolute score for Text-to-UMLS linking), with almost no loss of recall compared to the existing NER+L tool, SemEHR. Results on radiology reports from MIMIC-III and NHS Tayside were consistent with the discharge summaries. The overall pipeline processing clinical notes can extract rare disease cases, mostly uncaptured in structured data (manually assigned ICD codes). CONCLUSION: The study provides empirical evidence for the task by applying a weakly supervised NLP pipeline on clinical notes. The proposed weak supervised deep learning approach requires no human annotation except for validation and testing, by leveraging ontologies, NER+L tools, and contextual representations. The study also demonstrates that Natural Language Processing (NLP) can complement traditional ICD-based approaches to better estimate rare diseases in clinical notes. We discuss the usefulness and limitations of the weak supervision approach and propose directions for future studies.


Assuntos
Processamento de Linguagem Natural , Doenças Raras , Humanos , Doenças Raras/diagnóstico , Aprendizado de Máquina , Unified Medical Language System , Classificação Internacional de Doenças
11.
Diabetes Res Clin Pract ; 199: 110649, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004975

RESUMO

AIMS: Psychotropic medication may be associated with adverse effects, including among people with diabetes. We conducted a systematic review of observational studies investigating the association between antidepressant or antipsychotic drug prescribing and type 2 diabetes outcomes. METHODS: We systematically searched PubMed, EMBASE, and PsycINFO to 15th August 2022 to identify eligible studies. We used the Newcastle-Ottawa scale to assess study quality and performed a narrative synthesis. RESULTS: We included 18 studies, 14 reporting on antidepressants and four on antipsychotics. There were 11 cohort studies, one self-controlled before and after study, two case-control studies, and four cross-sectional studies, of variable quality with highly heterogeneous study populations, exposure definitions, and outcomes analysed. Antidepressant prescribing may be associated with increased risk of macrovascular disease, whilst evidence on antidepressant and antipsychotic prescribing and glycaemic control was mixed. Few studies reported microvascular outcomes and risk factors other than glycaemic control. CONCLUSIONS: Studies of antidepressant and antipsychotic drug prescribing in relation to diabetes outcomes are scarce, with shortcomings and mixed findings. Until further evidence is available, people with diabetes prescribed antidepressants and antipsychotics should receive monitoring and appropriate treatment of risk factors and screening for complications as recommended in general diabetes guidelines.


Assuntos
Antipsicóticos , Diabetes Mellitus Tipo 2 , Humanos , Antipsicóticos/efeitos adversos , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/induzido quimicamente , Estudos Transversais , Antidepressivos/efeitos adversos , Estudos de Casos e Controles
12.
NPJ Digit Med ; 6(1): 26, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810915

RESUMO

In supervised learning model development, domain experts are often used to provide the class labels (annotations). Annotation inconsistencies commonly occur when even highly experienced clinical experts annotate the same phenomenon (e.g., medical image, diagnostics, or prognostic status), due to inherent expert bias, judgments, and slips, among other factors. While their existence is relatively well-known, the implications of such inconsistencies are largely understudied in real-world settings, when supervised learning is applied on such 'noisy' labelled data. To shed light on these issues, we conducted extensive experiments and analyses on three real-world Intensive Care Unit (ICU) datasets. Specifically, individual models were built from a common dataset, annotated independently by 11 Glasgow Queen Elizabeth University Hospital ICU consultants, and model performance estimates were compared through internal validation (Fleiss' κ = 0.383 i.e., fair agreement). Further, broad external validation (on both static and time series datasets) of these 11 classifiers was carried out on a HiRID external dataset, where the models' classifications were found to have low pairwise agreements (average Cohen's κ = 0.255 i.e., minimal agreement). Moreover, they tend to disagree more on making discharge decisions (Fleiss' κ = 0.174) than predicting mortality (Fleiss' κ = 0.267). Given these inconsistencies, further analyses were conducted to evaluate the current best practices in obtaining gold-standard models and determining consensus. The results suggest that: (a) there may not always be a "super expert" in acute clinical settings (using internal and external validation model performances as a proxy); and (b) standard consensus seeking (such as majority vote) consistently leads to suboptimal models. Further analysis, however, suggests that assessing annotation learnability and using only 'learnable' annotated datasets for determining consensus achieves optimal models in most cases.

13.
NPJ Digit Med ; 5(1): 186, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36544046

RESUMO

Much of the knowledge and information needed for enabling high-quality clinical research is stored in free-text format. Natural language processing (NLP) has been used to extract information from these sources at scale for several decades. This paper aims to present a comprehensive review of clinical NLP for the past 15 years in the UK to identify the community, depict its evolution, analyse methodologies and applications, and identify the main barriers. We collect a dataset of clinical NLP projects (n = 94; £ = 41.97 m) funded by UK funders or the European Union's funding programmes. Additionally, we extract details on 9 funders, 137 organisations, 139 persons and 431 research papers. Networks are created from timestamped data interlinking all entities, and network analysis is subsequently applied to generate insights. 431 publications are identified as part of a literature review, of which 107 are eligible for final analysis. Results show, not surprisingly, clinical NLP in the UK has increased substantially in the last 15 years: the total budget in the period of 2019-2022 was 80 times that of 2007-2010. However, the effort is required to deepen areas such as disease (sub-)phenotyping and broaden application domains. There is also a need to improve links between academia and industry and enable deployments in real-world settings for the realisation of clinical NLP's great potential in care delivery. The major barriers include research and development access to hospital data, lack of capable computational resources in the right places, the scarcity of labelled data and barriers to sharing of pretrained models.

14.
Proc Int Conf Comput Ling ; 2022: 148-152, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36338790

RESUMO

This paper reports on the performance of Edin-burgh_UCL_Health's models in the Social Media Mining for Health (SMM4H) 2022 shared tasks. Our team participated in the tasks related to the Identification of Adverse Drug Events (ADEs), the classification of change in medication (change-med) and the classification of selfreport of vaccination (self-vaccine). Our best performing models are based on DeepADEM-iner (with respective F1= 0.64, 0.62 and 0.39 for ADE identification), on a GloVe model trained on Twitter (with F1=0.11 for the changemed) and finally on a stack embedding including a layer of Glove embedding and two layers of Flair embedding (with F1= 0.77 for selfreport).

15.
NPJ Digit Med ; 5(1): 159, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273236

RESUMO

Clinical coding is the task of transforming medical information in a patient's health records into structured codes so that they can be used for statistical analysis. This is a cognitive and time-consuming task that follows a standard process in order to achieve a high level of consistency. Clinical coding could potentially be supported by an automated system to improve the efficiency and accuracy of the process. We introduce the idea of automated clinical coding and summarise its challenges from the perspective of Artificial Intelligence (AI) and Natural Language Processing (NLP), based on the literature, our project experience over the past two and half years (late 2019-early 2022), and discussions with clinical coding experts in Scotland and the UK. Our research reveals the gaps between the current deep learning-based approach applied to clinical coding and the need for explainability and consistency in real-world practice. Knowledge-based methods that represent and reason the standard, explainable process of a task may need to be incorporated into deep learning-based methods for clinical coding. Automated clinical coding is a promising task for AI, despite the technical and organisational challenges. Coders are needed to be involved in the development process. There is much to achieve to develop and deploy an AI-based automated system to support coding in the next five years and beyond.

16.
Glob Heart ; 17(1): 46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36051323

RESUMO

Background: To use routinely collected data to develop a five-year cardiovascular disease (CVD) risk prediction model for Chinese adults with type 2 diabetes with validation of its performance in a population of European ancestry. Methods: People with incident type 2 diabetes and no history of CVD at diagnosis of diabetes between 2008 and 2017 were included in derivation and validation cohorts. The derivation cohort was identified from a pseudonymized research extract of data from the First Affiliated Hospital of Nanjing Medical University (NMU). Five-year risk of CVD was estimated using basic and extended Cox proportional hazards regression models including 6 and 11 predictors respectively. The risk prediction models were internally validated and externally validated in a Scottish population-based cohort with CVD events identified from linked hospital records. Discrimination and calibration were assessed using Harrell's C-statistic and calibration plots, respectively. Results: Mean age of the derivation and validation cohorts were 58.4 and 59.2 years, respectively, with 53.5% and 56.9% men. During a median follow-up time of 4.75 [2.67, 7.42] years, 18,827 (22.25%) of the 84,630 people in the NMU-Diabetes cohort and 8,763 (7.31%) of the Scottish cohort of 119,891 people developed CVD. The extended model had a C-statistic of 0.723 [0.721-0.724] in internal validation and 0.716 [0.713-0.719] in external validation. Conclusions: It is possible to generate a risk prediction model with moderate discriminative power in internal and external validation derived from routinely collected Chinese hospital data. The proposed risk score could be used to improve CVD prevention in people with diabetes.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Adulto , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/etiologia , China , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Medição de Risco , Fatores de Risco , Escócia/epidemiologia
17.
Database (Oxford) ; 20222022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-36043400

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has been severely impacting global society since December 2019. The related findings such as vaccine and drug development have been reported in biomedical literature-at a rate of about 10 000 articles on COVID-19 per month. Such rapid growth significantly challenges manual curation and interpretation. For instance, LitCovid is a literature database of COVID-19-related articles in PubMed, which has accumulated more than 200 000 articles with millions of accesses each month by users worldwide. One primary curation task is to assign up to eight topics (e.g. Diagnosis and Treatment) to the articles in LitCovid. The annotated topics have been widely used for navigating the COVID literature, rapidly locating articles of interest and other downstream studies. However, annotating the topics has been the bottleneck of manual curation. Despite the continuing advances in biomedical text-mining methods, few have been dedicated to topic annotations in COVID-19 literature. To close the gap, we organized the BioCreative LitCovid track to call for a community effort to tackle automated topic annotation for COVID-19 literature. The BioCreative LitCovid dataset-consisting of over 30 000 articles with manually reviewed topics-was created for training and testing. It is one of the largest multi-label classification datasets in biomedical scientific literature. Nineteen teams worldwide participated and made 80 submissions in total. Most teams used hybrid systems based on transformers. The highest performing submissions achieved 0.8875, 0.9181 and 0.9394 for macro-F1-score, micro-F1-score and instance-based F1-score, respectively. Notably, these scores are substantially higher (e.g. 12%, higher for macro F1-score) than the corresponding scores of the state-of-art multi-label classification method. The level of participation and results demonstrate a successful track and help close the gap between dataset curation and method development. The dataset is publicly available via https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/ for benchmarking and further development. Database URL https://ftp.ncbi.nlm.nih.gov/pub/lu/LitCovid/biocreative/.


Assuntos
COVID-19 , COVID-19/epidemiologia , Mineração de Dados/métodos , Bases de Dados Factuais , Humanos , PubMed , Publicações
18.
Comput Med Imaging Graph ; 99: 102091, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803034

RESUMO

Most learning-based magnetic resonance image (MRI) segmentation methods rely on the manual annotation to provide supervision, which is extremely tedious, especially when multiple anatomical structures are required. In this work, we aim to develop a hybrid framework named Spine-GFlow that combines the image features learned by a CNN model and anatomical priors for multi-tissue segmentation in a sagittal lumbar MRI. Our framework does not require any manual annotation and is robust against image feature variation caused by different image settings and/or underlying pathology. Our contributions include: 1) a rule-based method that automatically generates the weak annotation (initial seed area), 2) a novel proposal generation method that integrates the multi-scale image features and anatomical prior, 3) a comprehensive loss for CNN training that optimizes the pixel classification and feature distribution simultaneously. Our Spine-GFlow has been validated on 2 independent datasets: HKDDC (containing images obtained from 3 different machines) and IVDM3Seg. The segmentation results of vertebral bodies (VB), intervertebral discs (IVD), and spinal canal (SC) are evaluated quantitatively using intersection over union (IoU) and the Dice coefficient. Results show that our method, without requiring manual annotation, has achieved a segmentation performance comparable to a model trained with full supervision (mean Dice 0.914 vs 0.916).


Assuntos
Disco Intervertebral , Imageamento por Ressonância Magnética , Processamento de Imagem Assistida por Computador/métodos , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/patologia , Região Lombossacral , Imageamento por Ressonância Magnética/métodos
19.
Lancet Digit Health ; 4(7): e542-e557, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35690576

RESUMO

BACKGROUND: Updatable estimates of COVID-19 onset, progression, and trajectories underpin pandemic mitigation efforts. To identify and characterise disease trajectories, we aimed to define and validate ten COVID-19 phenotypes from nationwide linked electronic health records (EHR) using an extensible framework. METHODS: In this cohort study, we used eight linked National Health Service (NHS) datasets for people in England alive on Jan 23, 2020. Data on COVID-19 testing, vaccination, primary and secondary care records, and death registrations were collected until Nov 30, 2021. We defined ten COVID-19 phenotypes reflecting clinically relevant stages of disease severity and encompassing five categories: positive SARS-CoV-2 test, primary care diagnosis, hospital admission, ventilation modality (four phenotypes), and death (three phenotypes). We constructed patient trajectories illustrating transition frequency and duration between phenotypes. Analyses were stratified by pandemic waves and vaccination status. FINDINGS: Among 57 032 174 individuals included in the cohort, 13 990 423 COVID-19 events were identified in 7 244 925 individuals, equating to an infection rate of 12·7% during the study period. Of 7 244 925 individuals, 460 737 (6·4%) were admitted to hospital and 158 020 (2·2%) died. Of 460 737 individuals who were admitted to hospital, 48 847 (10·6%) were admitted to the intensive care unit (ICU), 69 090 (15·0%) received non-invasive ventilation, and 25 928 (5·6%) received invasive ventilation. Among 384 135 patients who were admitted to hospital but did not require ventilation, mortality was higher in wave 1 (23 485 [30·4%] of 77 202 patients) than wave 2 (44 220 [23·1%] of 191 528 patients), but remained unchanged for patients admitted to the ICU. Mortality was highest among patients who received ventilatory support outside of the ICU in wave 1 (2569 [50·7%] of 5063 patients). 15 486 (9·8%) of 158 020 COVID-19-related deaths occurred within 28 days of the first COVID-19 event without a COVID-19 diagnoses on the death certificate. 10 884 (6·9%) of 158 020 deaths were identified exclusively from mortality data with no previous COVID-19 phenotype recorded. We observed longer patient trajectories in wave 2 than wave 1. INTERPRETATION: Our analyses illustrate the wide spectrum of disease trajectories as shown by differences in incidence, survival, and clinical pathways. We have provided a modular analytical framework that can be used to monitor the impact of the pandemic and generate evidence of clinical and policy relevance using multiple EHR sources. FUNDING: British Heart Foundation Data Science Centre, led by Health Data Research UK.


Assuntos
COVID-19 , COVID-19/epidemiologia , Teste para COVID-19 , Estudos de Coortes , Registros Eletrônicos de Saúde , Inglaterra/epidemiologia , Humanos , SARS-CoV-2 , Medicina Estatal
20.
BMJ Health Care Inform ; 29(1)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35470133

RESUMO

OBJECTIVES: The Indian Liver Patient Dataset (ILPD) is used extensively to create algorithms that predict liver disease. Given the existing research describing demographic inequities in liver disease diagnosis and management, these algorithms require scrutiny for potential biases. We address this overlooked issue by investigating ILPD models for sex bias. METHODS: Following our literature review of ILPD papers, the models reported in existing studies are recreated and then interrogated for bias. We define four experiments, training on sex-unbalanced/balanced data, with and without feature selection. We build random forests (RFs), support vector machines (SVMs), Gaussian Naïve Bayes and logistic regression (LR) classifiers, running experiments 100 times, reporting average results with SD. RESULTS: We reproduce published models achieving accuracies of >70% (LR 71.31% (2.37 SD) - SVM 79.40% (2.50 SD)) and demonstrate a previously unobserved performance disparity. Across all classifiers females suffer from a higher false negative rate (FNR). Presently, RF and LR classifiers are reported as the most effective models, yet in our experiments they demonstrate the greatest FNR disparity (RF; -21.02%; LR; -24.07%). DISCUSSION: We demonstrate a sex disparity that exists in published ILPD classifiers. In practice, the higher FNR for females would manifest as increased rates of missed diagnosis for female patients and a consequent lack of appropriate care. Our study demonstrates that evaluating biases in the initial stages of machine learning can provide insights into inequalities in current clinical practice, reveal pathophysiological differences between the male and females, and can mitigate the digitisation of inequalities into algorithmic systems. CONCLUSION: Our findings are important to medical data scientists, clinicians and policy-makers involved in the implementation medical artificial intelligence systems. An awareness of the potential biases of these systems is essential in preventing the digital exacerbation of healthcare inequalities.


Assuntos
Inteligência Artificial , Hepatopatias , Algoritmos , Teorema de Bayes , Viés , Atenção à Saúde , Feminino , Humanos , Masculino , Aprendizado de Máquina Supervisionado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA