Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; : 101367, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38849082

RESUMO

BACKGROUND & AIMS: Siglec-H is a receptor specifically expressed in mouse plasmacytoid dendritic cells (pDCs), which functions as a negative regulator of interferon-α production and plays a critical role in pDC maturation to become antigen-presenting cells. The function of pDCs in autoimmune and inflammatory diseases has been reported. However, the effect of Siglec-H expression in pDCs in liver inflammation and diseases remains unclear. METHODS: Using the model of concanavalin A-induced acute liver injury (ALI), we investigated the Siglec-H/pDCs axis during ALI in BDCA2 transgenic mice and Siglec-H-/- mice. Anti-BDCA2 antibody, anti-interleukin (IL)-21R antibody, and Stat3 inhibitor were used to specifically deplete pDCs, block IL21 receptor, and inhibit Stat3 signaling, respectively. Splenocytes and purified naive CD4 T cells and bone marrow FLT3L-derived pDCs were cocultured and stimulated with phorbol myristate acetate/ionomycin and CD3/CD28 beads, respectively. RESULTS: Data showed that specific depletion of pDCs aggravated concanavalin A-induced ALI. Remarkably, alanine aminotransferase, hyaluronic acid, and proinflammatory cytokines IL6 and tumor necrosis factor-α levels were lower in the blood and liver of Siglec-H knockout mice. This was associated with attenuation of both interferon-γ/Th1 response and Stat1 signaling in the liver of Siglec-H knockout mice while intrahepatic IL21 and Stat3 signaling pathways were upregulated. Blocking IL21R or Stat3 signaling in Siglec-H knockout mice restored concanavalin A-induced ALI. Finally, we observed that the Siglec-H-null pDCs exhibited immature and immunosuppressive phenotypes (CCR9LowCD40Low), resulting in reduction of CD4 T-cell activation and promotion of IL21+CD4 T cells in the liver. CONCLUSIONS: During T-cell-mediated ALI, Siglec-H-null pDCs enhance immune tolerance and promote IL21+CD4 T cells in the liver. Targeting Siglec-H/pDC axis may provide a novel approach to modulate liver inflammation and disease.

2.
J Virol ; : e0055624, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888347

RESUMO

Enterovirus D68 (EV-D68) is a picornavirus associated with severe respiratory illness and a paralytic disease called acute flaccid myelitis in infants. Currently, no protective vaccines or antivirals are available to combat this virus. Like other enteroviruses, EV-D68 uses components of the cellular autophagy pathway to rewire membranes for its replication. Here, we show that transcription factor EB (TFEB), the master transcriptional regulator of autophagy and lysosomal biogenesis, is crucial for EV-D68 infection. Knockdown of TFEB attenuated EV-D68 genomic RNA replication but did not impact viral binding or entry into host cells. The 3C protease of EV-D68 cleaves TFEB at the N-terminus at glutamine 60 (Q60) immediately post-peak viral RNA replication, disrupting TFEB-RagC interaction and restricting TFEB transport to the surface of the lysosome. Despite this, TFEB remained mostly cytosolic during EV-D68 infection. Overexpression of a TFEB mutant construct lacking the RagC-binding domain, but not the wild-type construct, blocks autophagy and increases EV-D68 nonlytic release in H1HeLa cells but not in autophagy-defective ATG7 KO H1HeLa cells. Our results identify TFEB as a vital host factor regulating multiple stages of the EV-D68 lifecycle and suggest that TFEB could be a promising target for antiviral development against EV-D68. IMPORTANCE: Enteroviruses are among the most significant causes of human disease. Some enteroviruses are responsible for severe paralytic diseases such as poliomyelitis or acute flaccid myelitis. The latter disease is associated with multiple non-polio enterovirus species, including enterovirus D68 (EV-D68), enterovirus 71, and coxsackievirus B3 (CVB3). Here, we demonstrate that EV-D68 interacts with a host transcription factor, transcription factor EB (TFEB), to promote viral RNA(vRNA) replication and regulate the egress of virions from cells. TFEB was previously implicated in the viral egress of CVB3, and the viral protease 3C cleaves TFEB during infection. Here, we show that EV-D68 3C protease also cleaves TFEB after the peak of vRNA replication. This cleavage disrupts TFEB interaction with the host protein RagC, which changes the localization and regulation of TFEB. TFEB lacking a RagC-binding domain inhibits autophagic flux and promotes virus egress. These mechanistic insights highlight how common host factors affect closely related, medically important viruses differently.

3.
Microbiol Spectr ; 12(6): e0381123, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38647341

RESUMO

In the nitrogen biogeochemical cycle, the reduction of nitrous oxide (N2O) to N2 by N2O reductase, which is encoded by nosZ gene, is the only biological pathway for N2O consumption. In this study, we successfully isolated a strain of denitrifying Paracoccus denitrificans R-1 from sewage treatment plant sludge. This strain has strong N2O reduction capability, and the average N2O reduction rate was 5.10 ± 0.11 × 10-9 µmol·h-1·cell-1 under anaerobic condition in a defined medium. This reduction was accompanied by the stoichiometric consumption of acetate over time when N2O served as the sole electron acceptor and the reduction can yield energy to support microbial growth, suggesting that microbial N2O reduction is related to the energy generation process. Genomic analysis showed that the gene cluster encoding N2O reductase of P. denitrificans R-1 was composed of nosR, nosZ, nosD, nosF, nosY, nosL, and nosZ, which was identified as that in other strains in clade I. Respiratory inhibitors test indicated that the pathway of electron transport for N2O reduction was different from that of the traditional electron transport chain for aerobic respiration. Cu2+, silver nanoparticles, O2, and acidic conditions can strongly inhibit the reduction, whereas NO3- or NH4+ can promote it. These findings suggest that modular N2O reduction of P. denitrificans R-1 is linked to the electron transport and energy conservation, and dissimilatory N2O reduction is a form of microbial anaerobic respiration. IMPORTANCE: Nitrous oxide (N2O) is a potent greenhouse gas and contributor to ozone layer destruction, and atmospheric N2O has increased steadily over the past century due to human activities. The release of N2O from fixed N is almost entirely controlled by microbial N2O reductase activities. Here, we investigated the ability to obtain energy for the growth of Paracoccus denitrificans R-1 by coupling the oxidation of various electron donors to N2O reduction. The modular N2O reduction process of denitrifying microorganism not only can consume N2O produced by itself but also can consume the external N2O generated from biological or abiotic pathways under suitable condition, which should be critical for controlling the release of N2O from ecosystems into the atmosphere.


Assuntos
Desnitrificação , Óxido Nitroso , Paracoccus denitrificans , Paracoccus denitrificans/metabolismo , Paracoccus denitrificans/genética , Paracoccus denitrificans/crescimento & desenvolvimento , Óxido Nitroso/metabolismo , Transporte de Elétrons , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredução , Esgotos/microbiologia , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Elétrons
4.
Anal Chem ; 96(10): 4197-4204, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38420929

RESUMO

Herein, a method was developed to measure the ammonia oxidation rate (Ra) and the nitrite oxidation rate (Rn) of water and sediment samples using a coupled stable isotope tracing and sulfamic acid reduction (SIT-SAR) method. 15NH4+ was used as a tracer to determine the ammonia oxidation rates (Ra) by calculating the concentrations of produced 15NO2- and 15NO3- during incubation, while 15NO2- was used as a tracer to determine the nitrite oxidation rates (Rn) by calculating the increase of 15NO3- during incubation. 15NO2- was chemically reduced to 29N2 with 15 mmol·L-1 sulfamic acid (SA). 15NO3- was first reduced to 15NO2- with a zinc-cadmium reducing agent, and then 15NO2- was subsequently reduced to 29N2 with SA. The produced 29N2 was measured by a membrane inlet mass spectrometer (MIMS). Under optimized experimental conditions, this method provides a sensitive (detection limit: 0.5 µmol·L-1) and precise (relative standard deviation: 4.80% for 15NO2-, 3.82% for 15NO3-) approach to quantify the concentrations of 15NO2- (0.5-150 µmol·L-1) and 15NO3- (0.5-120 µmol·L-1) in water and sediment samples over a wide range of salinities (0-30‰) with excellent calibration curves (R2 ≥ 0.999). This method was a successful application to estuarine water and sediments along the salinity gradient. Overall, the SIT-SAR method provided a rapid, accurate, and cost-effective means to determine Ra and Rn simultaneously.

5.
Mar Pollut Bull ; 201: 116181, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394796

RESUMO

Coastal lagoon is critical habitat for human and provides a wide range of ecosystem services. These vital habitats are now threatened by waste discharge and eutrophication. Previous studies suggest that the pollution mitigation of coastal lagoon relies on the water exchange with open sea, and the role of microbial processes inside the lagoon is overlooked. This study takes the Pinqing Lagoon which is the largest coastal lagoon in Chinese mainland as example. The distribution of nutrients, microbial activity of nitrogen removal and community structure of denitrifying bacteria in sediment are analyzed. The results showed that the nutrient in sediment represented by DIN (1.65-12.78 mg kg-1), TOM (0.59-8.72 %) and TN (0.14-1.93 mg g-1) are at high levels and are enriched at the terrestrial impacted zone (TZ). The microbial nitrogen removal is active at 0.27-19.76 µmol N kg-1 h-1 in sediment and denitrification is the dominate pathway taking 51.44-98.71 % of total N removal. The composition of the denitrifying microbial community in marine impacted zone (MZ) is close to that of ocean and estuary, but differs considerably with those of TZ and transition zone (TM). The denitrification activity is mainly controlled by salinity and pH, and the denitrifying bacterial community composition related to the nutrient parameters of TN, TOM, etc. Our study suggested that the distribution of nutrients, microbial activity of nitrogen removal and community structure in Lagoon are the combined effects of terrestrial input and exchange with open sea. The microbial processes play important role in the nitrogen removal of coastal lagoon.


Assuntos
Desnitrificação , Ecossistema , Humanos , Nitrogênio/análise , Salinidade , China , Concentração de Íons de Hidrogênio
6.
Mar Pollut Bull ; 200: 116046, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246016

RESUMO

Ammonia-oxidizing prokaryotes (AOPs) are the major contributors of ammonia oxidization with widely distribution. Here we investigated the phylogenetic diversity, community composition, and regulating factors of AOPs in Jiaozhou Bay (JZB) with high-throughput sequencing of amoA gene. Phylogenetic analysis showed most of the OTUs could not be clustered with any known AOPs, indicating there might exist putative novel AOPs. With new developed protocols for AOP community analysis, we confirmed that only 3 OTUs of ammonia-oxidizing archaea (AOA) could be affiliated to known Nitrosopumilaceae and Nitrososphaera, and the other OTUs were identified as novel AOA based on the threshold. All abstained OTUs of ammonia-oxidizing bacteria (AOB) were identified as novel clusters based on the threshold. Further analysis showed the novel AOPs had different distribution characteristics related to environmental factors. The high abundance and widespread distribution of these novel AOPs indicated that they played an important role in ammonia conversion in eutrophic JZB.


Assuntos
Amônia , Bactérias , Bactérias/genética , Filogenia , Baías , Oxirredução , Archaea/genética , Microbiologia do Solo
7.
Mar Environ Res ; 195: 106373, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266547

RESUMO

Methanogens are considered to be crucial components of mangrove ecosystems with ecological significance. However, understanding the assembly processes of methanogenic communities in mangrove ecosystems is relatively insufficient. In the current study, a natural mangrove in a protection zone was employed to investigate the diversity and assembly processes of methanogenic community by using amplicon high-throughput sequencing, a null model as well as a neutral community model. The results showed that methanogenic community in mangrove sediments were highly diverse, with the predominance of methylotrophic Methanolobus, and hydrogenotrophic Methanogenium, Methanospirillum. The diversity, composition, and gene abundance varied obviously across the mangrove sampling sites, whereas the measured environmental variables exhibited a negligible effect. Null model showed that the values of beta nearest-taxon index were mostly between -2 and 2, indicating that stochastic processes contributed more than deterministic processes driving the methanogenic community assembly in mangrove sediments. Neutral community model revealed a high estimated migration rate of methanogenic community, further substantiating the significance of stochastic processes. Among the keystone species identified in network analysis, methanogens affiliated to hydrogenotrophic Methanospirillum may have a crucial role in maintaining the structure and function of methanogenic community. Notably, these keystone species were almost unaffected by measured environmental factors, indicating that the methanogenic community in mangrove sediments is more likely to be affected by stochastic processes. This study deepens the understanding of the diversity and assembly of methanogenic community in mangrove sediments, and provides clues to maintain mangrove ecosystem functioning.


Assuntos
Ecossistema , Processos Estocásticos
8.
Mar Environ Res ; 194: 106342, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185001

RESUMO

The autotrophic carbon fixation pathway of ammonia-oxidizing archaea (AOA) was the 3-hydroxypropionate/4-hydroxybutyrate (3-HP/4-HB) cycle, of which the acetyl-CoA carboxylase α-submit (accA) gene is widely recognized as the indicator. To date, there is no reference database or suitable cut-off value for operational taxonomic unit (OTU) clustering to analyze the diversity of AOA based on the accA gene. In this study, a reference database with 489 sequences was constructed, all the accA gene sequences was obtained from the AOA enrichment culture, pure culture and environmental samples. Additionally, the 79% was determined as the cut-off value for OTU clustering by comparing the similarity between the accA gene and the 16S rRNA gene. The developed method was verified by analyzing samples from the subterranean estuary and a vertical variation pattern of autotrophic carbon fixation potential of AOA was revealed. This study provided an effective method to analyze the diversity and autotrophic carbon fixation potential of AOA based on accA gene.


Assuntos
Amônia , Archaea , Archaea/genética , Amônia/metabolismo , Estuários , RNA Ribossômico 16S/genética , Oxirredução , Ciclo do Carbono , Filogenia
9.
Eur Radiol ; 34(2): 745-754, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37589899

RESUMO

OBJECTIVE: To investigate whether the feeding artery (FA) feature can aid in discriminating small hepatocellular carcinoma (HCC) using the contrast-enhanced ultrasound (CEUS) Liver Imaging Reporting and Data System (LI-RADS) from precancerous lesions. METHODS: Between June 2017 and May 2021, a total of 347 patients with 351 precancerous liver lesions or small HCCs who underwent CEUS were enrolled. Two independent radiologists assigned LI-RADS categories to all lesions and assessed the presence of the FA feature, which was used as an ancillary feature to either upgrade or downgrade the LI-RADS category. The diagnostic performance of CEUS LI-RADS, both with and without the FA feature, was evaluated based on accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. RESULTS: The FA feature was found to be more prevalent in HCC (85.54%, p < 0.001) than in regenerative nodules (RNs, 29.73%), low-grade dysplastic nodules (LGDNs, 33.33%), and high-grade dysplastic nodules (HGDNs, 55.26%). Furthermore, the presence of arterial phase hyperenhancement (APHE), washout (WO), and FA in liver nodules was associated with a higher expression of GPC-3 and Ki-67 compared to the group without these features (p < 0.001). After adjusting, the sensitivity and accuracy of LR-5 for HCC improved from 68.67% (95%CI: 62.46%, 74.30%) to 77.51% (95%CI: 71.72%, 82.44%) and from 69.23% (95%CI: 64.11%, 74.02%) to 73.79% (95%CI: 68.86%, 78.31%), respectively. CONCLUSION: The FA feature is a valuable feature for distinguishing small HCC and precancerous lesions and could be added as a possible ancillary feature in CEUS LI-RADS which was backed up by biomarkers. CLINICAL RELEVANCE STATEMENT: The presence of a feeding artery is a valuable imaging feature in the differentiation of HCC and precancerous lesions. Incorporating this characteristic in the CEUS LI-RADS can enhance the diagnostic ability. KEY POINTS: • Feeding artery is more frequent in HCC than in regenerative nodules, low-grade dysplastic nodules, and high-grade dysplastic nodules. • Feeding artery feature is a valuable ancillary feature for CEUS LI-RADS to differentiate regenerative nodules, low-grade dysplastic nodules, high-grade dysplastic nodules, and HCC. • The existence of feeding artery, arterial phase hyperenhancement, and washout is associated with more GPC-3 positive expression and higher Ki-67 expression than the group without these features.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Lesões Pré-Cancerosas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Antígeno Ki-67 , Meios de Contraste/farmacologia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Artérias/patologia , Hiperplasia/patologia , Lesões Pré-Cancerosas/patologia , Sensibilidade e Especificidade
10.
Mar Pollut Bull ; 196: 115580, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801799

RESUMO

The bacterial community plays an important role in biogeochemical cycles in marine sediment. However, little is known about the vertical profiles and co-occurrence patterns of bacterial community in sediment cores from the marine environment. In this study, five sediment cores were taken from a subtropical bay in China, heavily impacted by anthropogenic activities. The bacterial composition in sediment cores was investigated by using high-throughput sequencing of the 16S rRNA gene. A principal coordinates analysis and an adonis analysis of the operational taxonomic unit (OTU) compositions showed that spatial variation, rather than vertical variation, determined the bacterial structure in sediment cores. The bacterial complexity varied greatly across the five sediment cores, and the rare taxa played an important role in supporting the stability of the bacterial network. This study revealed that sediment properties and anthropogenic activities may induce a shift in the bacterial composition in sediment cores of a subtropical bay.


Assuntos
Bactérias , Baías , Baías/microbiologia , RNA Ribossômico 16S/genética , Bactérias/genética , Sedimentos Geológicos/química , China
11.
J Ultrasound Med ; 42(12): 2825-2838, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37713625

RESUMO

OBJECTIVES: To compare the on-site diagnostic performance of contrast-enhanced ultrasound (CEUS), computed tomography (CECT), and magnetic resonance imaging (CEMRI) for hepatocellular carcinoma (HCC) across diverse practice settings. METHODS: Between May 2019 and April 2022, a total of 2085 patients with 2320 pathologically confirmed focal liver lesions (FLLs) were enrolled. Imaging reports were compared with results from pathology analysis. Diagnostic performance was analyzed in defined size, high-risk factors for HCC, and hospital volume categories. RESULTS: Three images achieved similar diagnostic performance in classifying HCC from 16 types of FLLs, including HCC ≤2.0 cm. For HCC diagnosis at low-volume hospitals and HCC with high-risk factors, the accuracy and specificity of CEUS were comparable to CECT and CEMRI, while the sensitivity of CEUS (77.4 and 89.5%, respectively) was inferior to CEMRI (87.0 and 92.8%, respectively). The diagnostic accuracy of CEUS + CEMRI and CEUS + CECT increased by 7.8 and 6.2% for HCC ≤2.0 cm, 8.0 and 5.0% for HCC with high-risk factors, and 7.4 and 5.5% for HCC at low-volume hospitals, respectively, compared with CEMRI/CECT alone. CONCLUSIONS: Compared with CECT and CEMRI, CEUS provides adequate diagnostic performance in clinical first-line applications at high-volume hospitals. Moreover, a higher diagnostic performance for HCC is achieved by combining CEUS with CECT/CEMRI compared with any single imaging technique.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Meios de Contraste , Ultrassonografia/métodos , Imageamento por Ressonância Magnética/métodos , Tomografia Computadorizada por Raios X/métodos
12.
Mar Environ Res ; 190: 106119, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37535997

RESUMO

Denitrification is the dominant process of nitrogen removal and nitrous oxide (N2O) emissions in estuarine ecosystems. However, little is known regarding the microbial mechanism of the production and reduction of N2O in estuaries. We investigated in situ dissolved N2O as well as potential N2O production rate (NPR), reduction rate (NRR), and emission rate (NER), and key functional genes related to N2O transformation of denitrification in the Pearl River Estuary. Higher N2O emission potential was found in the upstream and midstream regions with higher NPR and lower NRR values. In contrast, higher NRR values were detected in downstream. Notably, nirS and nirK type N2O producers dominated the upstream zone, whereas abundant N2O reducers, especially nosZ II type N2O reducers, were observed in downstream. Most importantly, the gene abundance ratio (Rnir/nosZ) was significantly correlated with the N2O emission potential (Re). Niche differentiation between N2O producers and N2O reducers from upstream to downstream affected N2O emission potential. This study highlights the N2O emission potential in estuarine sediments is determined by an imbalance between N2O production and the reduction of multi-bacterial communities.


Assuntos
Estuários , Microbiota , Desnitrificação , Microbiologia do Solo , Bactérias/genética , Óxido Nitroso/análise , Nitrogênio
13.
Front Microbiol ; 14: 1218207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396352

RESUMO

Denitrification is vital to nitrogen removal and N2O release in ecosystems; in this regard, paddy soils exhibit strong denitrifying ability. However, the underlying mechanism of N2O emission from denitrification in paddy soils is yet to be elucidated. In this study, the potential N2O emission rate, enzymatic activity for N2O production and reduction, gene abundance, and community composition during denitrification were investigated using the 15N isotope tracer technique combined with slurry incubation, enzymatic activity detection, quantitative polymerase chain reaction (qPCR), and metagenomic sequencing. Results of incubation experiments showed that the average potential N2O emission rates were 0.51 ± 0.20 µmol⋅N⋅kg-1⋅h-1, which constituted 2.16 ± 0.85% of the denitrification end-products. The enzymatic activity for N2O production was 2.77-8.94 times than that for N2O reduction, indicating an imbalance between N2O production and reduction. The gene abundance ratio of nir to nosZ from qPCR results further supported the imbalance. Results of metagenomic analysis showed that, although Proteobacteria was the common phylum for denitrification genes, other dominant community compositions varied for different denitrification genes. Gammaproteobacteria and other phyla containing the norB gene without nosZ genes, including Actinobacteria, Planctomycetes, Desulfobacterota, Cyanobacteria, Acidobacteria, Bacteroidetes, and Myxococcus, may contribute to N2O emission from paddy soils. Our results suggest that denitrification is highly modular, with different microbial communities collaborating to complete the denitrification process, thus resulting in an emission estimation of 13.67 ± 5.44 g N2O⋅m-2⋅yr-1 in surface paddy soils.

14.
Lancet Digit Health ; 5(8): e503-e514, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37507196

RESUMO

BACKGROUND: Ultrasonography is the most widely used technique to diagnose echinococcosis; however, challenges in using this technique and the demand on medical resources, especially in low-income or remote areas, can delay diagnosis. We aimed to develop a deep convolutional neural network (DCNN) model based on ultrasonography to identify echinococcosis and its types, especially alveolar echinococcosis. METHODS: This retrospective, large-scale, multicentre study used ultrasound images from patients assessed at 84 hospitals in China, obtained between Jan 1, 2002, and Dec 31, 2021. Patients with a diagnosis of cystic echinococcosis, alveolar echinococcosis, or seven other types of focal liver lesions were included. We tested ResNet-50, ResNext-50, and VGG-16 as the backbone network architecture for a classification DCNN model and input the perinodular information from the ultrasound images. We trained and validated the DCNN model to diagnose and classify echinococcosis using still greyscale ultrasound images of focal liver lesions in four stages: differentiating between echinococcosis and other focal liver lesions (stage one); differentiating cystic echinococcosis, alveolar echinococcosis, and other focal liver lesions (stage two); differentiating cystic echinococcosis, alveolar echinococcosis, benign other focal liver lesions, and malignant focal liver lesions (stage three); and differentiating between active and transitional cystic echinococcosis and inactive cystic echinococcosis (stage four). We then tested the algorithm on internal, external, and prospective test datasets. The performance of DCNN was also compared with that of 12 radiologists recruited between Jan 15, 2022, and Jan 28, 2022, from Qinghai, Xinjiang, Anhui, Henan, Xizang, and Beijing, China, with different levels of diagnostic experience for echinococcosis and other focal liver lesions in a subset of ultrasound data that were randomly chosen from the prospective test dataset. The study is registered at ClinicalTrials.gov (NCT03871140). FINDINGS: The study took place between Jan 1, 2002, and Dec 31, 2021. In total, to train and test the DCNN model, we used 9631 liver ultrasound images from 6784 patients (2819 [41·7%] female patients and 3943 [58·3%] male patients) from 87 Chinese hospitals. The DCNN model was trained with 6328 images, internally validated with 984 images, and tested with 2319 images. The ResNet-50 network architecture outperformed VGG-16 and ResNext-50 and was generalisable, with areas under the receiver operating characteristic curve (AUCs) of 0·982 (95% CI 0·960-0·994), 0·984 (0·972-0·992), and 0·913 (0·886-0·935) in distinguishing echinococcosis from other focal liver lesions; 0·986 (0·966-0·996), 0·962 (0·946-0·975), and 0·900 (0·872-0·924) in distinguishing alveolar echinococcosis from cystic echinococcosis and other focal liver lesions; and 0·974 (0·818-1·000), 0·956 (0·875-0·991), and 0·944 (0·844-0·988) in distinguishing active and transitional cystic echinococcosis from inactive echinococcosis in the three test datasets. Specifically, in patients with the hepatitis B or hepatitis C virus, the model could distinguish alveolar echinococcosis from hepatocellular carcinoma with an AUC of 0·892 (0·812-0·946). In identifying echinococcosis, the model showed significantly better performance compared with senior radiologists from a high-endemicity area (AUC 0·942 [0·904-0·967] vs 0·844 [0·820-0·866]; p=0·027) and improved the diagnostic ability of junior, attending, and senior radiologists before and after assistance with AI with comparison of AUCs of 0·743 (0·714-0·770) versus 0·850 (0·826-0·871); p<0·0001, 0·808 (0·782-0·832) versus 0·886 (0·864-0·905); p<0·0001, and 0·844 (0·820-0·866) versus 0·870 (0·847-0·890); p=0·092, respectively. INTERPRETATION: The DCNN model was shown to be accurate and robust, and could improve the ultrasound diagnostic ability of radiologists for echinococcosis and its types for highly endemic and remote regions. FUNDING: National Natural Science Foundation of China and National Key Research & Development Program of China. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Equinococose Hepática , Equinococose , Neoplasias Hepáticas , Humanos , Masculino , Feminino , Estudos Retrospectivos , Equinococose Hepática/diagnóstico por imagem , Estudos Prospectivos , Redes Neurais de Computação , Equinococose/diagnóstico por imagem , Ultrassonografia
15.
Environ Pollut ; 329: 121732, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37116571

RESUMO

The microbial reduction of N2O serves as a "gatekeeper" for N2O emissions, determining the flux of N2O release into the atmosphere. Estuaries are active regions for N2O emissions, but the microbial functions of N2O-reducing bacteria in estuarine ecosystems are not well understood. In this study, the 15N isotope tracer method, qPCR, and high-throughput sequencing were used to analyze N2O production, reduction, and emission processes in surface sediments of the Pearl River Estuary. The 15N isotope tracer experiment showed that the N2O production rates declined and the N2O reduction potential (Rr, the ratio of N2O reduction rates to N2O production rates) increased from upstream to downstream of the Pearl River Estuary, leading to a corresponding decrease of the N2O emission rates from upstream to downstream. The gene abundance ratio of nosZ/nir gradually increased from upstream to downstream and was negatively correlated with the water N2O saturation. The gene abundance of nosZ II was significantly higher than that of nosZ I in the estuary, and the nosZ II/nosZ I abundance ratio was positively correlated with N2O reduction potential. Furthermore, the community composition of NosZ-I- and NosZ-II-type N2O-reducing bacteria shifted from upstream to downstream. NosZ-II-type N2O-reducing bacteria, especially Myxococcales, Thiotrichales, and Gemmatimonadetes species, contributed to the high N2O reduction potential in the downstream. Our results suggest that NosZ-II-type N2O-reducing bacteria play a dominant role in determining the release potential of N2O from sediments in the Pearl River Estuary. This study provides a new insight into the function of microbial N2O reduction in estuarine ecosystems.


Assuntos
Ecossistema , Estuários , Óxido Nitroso , Bactérias/genética , Rios , China , Desnitrificação
16.
Sensors (Basel) ; 23(5)2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36905041

RESUMO

It is crucial to monitor the status of aquaculture objects in recirculating aquaculture systems (RASs). Due to their high density and a high degree of intensification, aquaculture objects in such systems need to be monitored for a long time period to prevent losses caused by various factors. Object detection algorithms are gradually being used in the aquaculture industry, but it is difficult to achieve good results for scenes with high density and complex environments. This paper proposes a monitoring method for Larimichthys crocea in a RAS, which includes the detection and tracking of abnormal behavior. The improved YOLOX-S is used to detect Larimichthys crocea with abnormal behavior in real time. Aiming to solve the problems of stacking, deformation, occlusion, and too-small objects in a fishpond, the object detection algorithm used is improved by modifying the CSP module, adding coordinate attention, and modifying the part of the structure of the neck. After improvement, the AP50 reaches 98.4% and AP50:95 is also 16.2% higher than the original algorithm. In terms of tracking, due to the similarity in the fish's appearance, Bytetrack is used to track the detected objects, avoiding the ID switching caused by re-identification using appearance features. In the actual RAS environment, both MOTA and IDF1 can reach more than 95% under the premise of fully meeting real-time tracking, and the ID of the tracked Larimichthys crocea with abnormal behavior can be maintained stably. Our work can identify and track the abnormal behavior of fish efficiently, and this will provide data support for subsequent automatic treatment, thus avoiding loss expansion and improving the production efficiency of RASs.


Assuntos
Perciformes , Animais , Peixes , Aquicultura/métodos
17.
Water Res ; 235: 119799, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965294

RESUMO

Microbial-driven nitrogen removal is a crucial step in modern full-scale wastewater treatment plants (WWTPs), and the complexity of nitrogen transformation is integral to the various wastewater treatment processes. A full understanding of the overall nitrogen cycling networks in WWTPs is therefore a prerequisite for the further enhancement and optimization of wastewater treatment processes. In this study, metagenomics and metatranscriptomics were used to elucidate the microbial nitrogen removal processes in an ammonium-enriched full-scale WWTP, which was configured as an anaerobic-anoxic-anaerobic-oxic system for efficient nitrogen removal (99.63%) on a duck breeding farm. A typical simultaneous nitrification-anammox-denitrification (SNAD) process was established in each tank of this WWTP. Ammonia was oxidized by ammonia-oxidizing bacteria (AOB), archaea (AOA), and nitrite-oxidizing bacteria (NOB), and the produced nitrite and nitrate were further reduced to dinitrogen gas (N2) by anammox and denitrifying bacteria. Visible red anammox biofilms were formed successfully on the sponge carriers submerged in the anoxic tank, and the nitrogen removal rate by anammox reaction was 4.85 times higher than that by denitrification based on 15N isotope labeling and analysis. This supports the significant accumulation of anammox bacteria on the carriers responsible for efficient nitrogen removal. Two distinct anammox bacteria, named "Ca. Brocadia sp. PF01" and "Ca. Jettenia sp. PF02", were identified from the biofilm in this investigation. By recovering their genomic features and their metabolic capabilities, our results indicate that the highly active core anammox process found in PF01, suggests extending its niche within the plant. With the possible contribution of the dissimilatory nitrate reduction to ammonium (DNRA) reaction, enriching PF02 within the biofilm may also be warranted. Collectively, this study highlights the effective design strategies of a full-scale WWTP with enrichment of anammox bacteria on the carrier materials for nitrogen removal and therefore the biochemical reaction mechanisms of the contributing members.


Assuntos
Compostos de Amônio , Purificação da Água , Amônia/metabolismo , Desnitrificação , Águas Residuárias , Nitritos/metabolismo , Nitratos/metabolismo , Oxidação Anaeróbia da Amônia , Nitrogênio/metabolismo , Anaerobiose , Oxirredução , Reatores Biológicos/microbiologia , Compostos de Amônio/metabolismo , Bactérias/genética , Bactérias/metabolismo , Purificação da Água/métodos
18.
Int J Hyperthermia ; 40(1): 2181843, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36854449

RESUMO

BACKGROUND: The range of an ablation zone (AZ) plays a crucial role in the treatment effect of microwave ablation (MWA). The aim of this study was to analyze the factors influencing the AZ range. METHODS: Fourteen factors in four areas were included: patient-related factors (sex, age), disease-related factors (tumor location, liver cirrhosis), serological factors (ALT, AST, total protein, albumin, total bilirubin, direct bilirubin, and platelets), and MWA parameters (ablation time, power, and needle type). Multiple sequence MRI was used to delineate AZ by three radiologists using 3D Slicer. MATLAB was used to calculate the AZ length, width, and area of the largest section. Linear regression analysis was used to analyze influencing factors. Moreover, a subgroup analysis was conducted for patients with viral hepatitis. RESULT: 220 patients with 290 tumors were included between 2010-2021. In addition to MWA parameters, cirrhosis and tumor location were significant factors that influenced AZ (p < 0.001). The standardized coefficient (beta) of cirrhosis (cirrhosis vs. non-cirrhosis) was positive, which meant cirrhosis would lead to a decrease in AZ range. The beta of tumor location (near the hepatic hilar zone, intermediate zone, and periphery zone) was negative, indicating that AZ range decreased as the tumor location approached the hepatic hilum. For viral hepatitis patients, Fibrosis 4 (FIB4) score was a significant factor influencing AZ (p < 0.001), and the beta was negative, indicating that AZ range decreased as FIB4 increased. CONCLUSION: Liver cirrhosis, tumor location, and FIB4 affect the AZ range and should be considered when planning MWA parameters.


Assuntos
Cirrose Hepática , Micro-Ondas , Humanos , Micro-Ondas/uso terapêutico , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/cirurgia , Bilirrubina , Plaquetas , Agulhas
19.
Front Microbiol ; 14: 1104297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36814566

RESUMO

Intricate associations between rhizosphere microbial communities and plants play a critical role in developing and maintaining of soil ecological functioning. Therefore, understanding the assembly patterns of rhizosphere microbes in different plants and their responses to environmental changes is of great ecological implications for dynamic habitats. In this study, a developing mid-channel bar was employed in the Yangtze River to explore the assembly processes of rhizosphere fungal communities among various plant species using high-throughput sequencing-based null model analysis. The results showed a rare significant variation in the composition and alpha diversity of the rhizosphere fungal community among various plant species. Additionally, the soil properties were found to be the primary drivers instead of plant species types. The null model analysis revealed that the rhizosphere fungal communities were primarily driven by stochastic processes (i.e., undominated processes of ecological drift), and the predominance varied with various plant species. Moreover, the assembly processes of rhizosphere fungal communities were significantly related to the changes in soil properties (i.e., soil total carbon, total nitrogen, organic matter, and pH). The co-occurrence network analysis revealed that many keystone species belonged to unclassified fungi. Notably, five network hubs were almost unaffected by the measured soil properties and aboveground plant traits, indicating the effect of stochastic processes on the rhizosphere fungal community assembly. Overall, these results will provide insights into the underlying mechanisms of fungal community assembly in the rhizosphere soils, which are significant for maintaining the functional stability of a developing ecosystem.

20.
Eur J Radiol ; 158: 110617, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36463706

RESUMO

PURPOSE: The ablated tumor ghost can be visually distinguished on MR images after ablation. This retrospective study aimed to assess the performance of tumor ghost on post-ablation contrast-enhanced MRI with excellular contrast agent gadolinium-DTPA in evaluating the ablative margin of hepatocellular carcinoma (HCC) after microwave ablation (MWA). METHOD: 315 HCC lesions less than 5 cm in 287 patients completely treated by MWA were enrolled in the study. The tumor ghost was characterized as a lower signal intensity area than the surrounding tissues of the ablation zone on T1WI imaging. The ablation margin (AM) status was classified into AM0 (>5mm) and AM1 (<5mm) according to the minimum distance between the tumor ghost and ablated zone. Inter-observer agreement between two radiologists on the AM assessment was analyzed using the Cohen κ coefficient. Multivariate analysis using Cox proportional hazard model was performed to investigate independent risk factors for LTP. RESULTS: 175 and 140 tumors were evaluated as AM0 and AM1 through tumor ghost. The inter-observer agreement level between two radiologists for assessment of AM was good (κ coefficient = 0.752, 95 % confidence interval: 0.679-0.825, p < 0.001). The mediate follow-up period was 32.2 months (range 3.0-60.8 months). The incidence of LTP in the AM0 lesions and AM1 lesions was 6.3 % (11/175) and 20.0 % (28/140), respectively. AM status was identified as an independent prognostic factor for LTP (HR 3.057, 95 % CI, 1.445-6.470, p = 0.003). CONCLUSIONS: The assessment of the AM by tumor ghost on post-ablation MRI is an accurate and efficiently method for evaluating the completeness of microwave ablation for hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Ablação por Cateter , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/cirurgia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/cirurgia , Neoplasias Hepáticas/patologia , Estudos Retrospectivos , Micro-Ondas/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Ablação por Cateter/métodos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA