Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Orthop Surg ; 15(1): 328-336, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36411506

RESUMO

OBJECTIVE: Although pedicle screws are widely used to reconstruct the stability of the spine, screw loosening is a common complication after spine surgery. The main objective of this study was to investigate whether the application of the hollow lateral hole structure had the potential to improve the stability of the pedicle screw by comparing the biomechanical properties of the novel lateral hole pedicle screws (LHPSs) with those of the solid pedicle screws (SPSs) in beagle dogs. METHODS: The cancellous bone of the distal femur, proximal femur, distal tibia, and proximal tibia were chosen as implantation sites in beagle dogs. In each of 12 dogs, four LHPSs, and four SPSs were implanted into both lower limbs. At 1, 2, and 3 months after surgery, four dogs were randomly sampled and sacrificed. The LHPS group and SPS group were subdivided into four subgroups according to the length of their duration of implantation (0, 1, 2, 3 months). The biomechanical properties of both pedicle screws were evaluated by pull-out and the cyclic bending tests. RESULTS: The results of the study showed that no significant difference was found between LHPSs (276.62 ± 50.11 N) and SPSs (282.47 ± 42.98 N) in pull-out tests at time 0 (P > 0.05). At the same time point after implantations, LHPSs exhibited significantly higher maximal pullout strength than SPSs (month 1: 360.51 ± 25.63 vs 325.87 ± 28.11 N; month 2: 416.59 ± 23.78 vs 362.12 ± 29.27 N; month 3: 447.05 ± 38.26 vs 376.63 ± 32.36 N) (P < 0.05). Moreover, compared with SPSs, LHPSs withstood more loading cycles (month 2: 592 ± 21 vs 534 ± 48 times; month 3: 596 ± 10 vs 543 ± 59 times), and exhibiting less displacement before loosening at month 2 (1.70 ± 0.17 vs 1.96 ± 0.10 mm) and 3 (1.69 ± 0.19 vs 1.92 ± 0.14 mm) (P < 0.05), but no significant difference in time 0 and month 1 (P > 0.05). CONCLUSIONS: The pedicle screw with the hollow lateral hole structure could allow bone to grow into the inner architecture, which improved biomechanical properties by extending the contact area between screw and bone tissue after implantation into the cancellous bone. It indicated that LHPS could reduce loosening of the pedicle screws in long term after surgery.


Assuntos
Parafusos Pediculares , Cães , Animais , Coluna Vertebral , Fenômenos Biomecânicos , Teste de Materiais , Vértebras Lombares/cirurgia
2.
Injury ; 53(3): 1094-1097, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34689988

RESUMO

OBJECTIVE: To explore the clinical characteristics and the short-term efficacy of posterior operation for traumatic lumbar spondylolisthesis. METHODS: All 28 patients (between January 2013 and June 2018) were treated with lumbar pedicle screw fixation combined with posterior intervertebral fusion. The clinical data and imaging materials of these patients were retrospectively analyzed. RESULTS: The mean follow-up period was 24.3 months (12-36 months). The average VAS score and JOA score were significantly improved after surgery, and the difference was statistically significant (P<0.05).The last follow-up X-ray showed that 16 cases were degree 0 and 12 cases were degree I according to Meyerding grading, which were statistically improved compared with preoperative. Postoperative CT indicated lumbar internal fixation well, and the lumbar fusion rate was 100%. The Frankel grading of neurological function was significantly improved compared with preoperative. CONCLUSION: Acute traumatic lumbar spondylolisthesis is caused by severe trauma and mostly occurred at L4/L5 and L5/S1 level. Early posterior reduction, decompression and intervertebral fusion can achieve satisfactory clinical and radiological outcome.


Assuntos
Fusão Vertebral , Espondilolistese , Humanos , Vértebras Lombares/diagnóstico por imagem , Vértebras Lombares/cirurgia , Estudos Retrospectivos , Fusão Vertebral/métodos , Espondilolistese/diagnóstico por imagem , Espondilolistese/cirurgia , Resultado do Tratamento
3.
Sci Rep ; 7(1): 4425, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28667297

RESUMO

Active and widely controllable phase transition optical materials have got rapid applications in energy-efficient electronic devices, field of meta-devices and so on. Here, we report the optical properties of the vanadium dioxide (VO2)/aluminum-doped zinc oxide (Al:ZnO) hybrid n-n type heterojunctions and the corresponding electro-optic performances of the devices. Various structures are fabricated to compare the discrepancy of the optical and electrical characteristics. It was found that the reflectance spectra presents the wheel phenomenon rather than increases monotonically with temperature at near-infrared region range. The strong interference effects was found in the hybrid multilayer heterojunction. In addition, the phase transition temperature decreases with increasing the number of the Al:ZnO layer, which can be ascribed to the electron injection to the VO2 film from the Al:ZnO interface. Affected by the double layer Al:ZnO, the abnormal Raman vibration mode was presented in the insulator region. By adding the external voltage on the Al2O3/Al:ZnO/VO2/Al:ZnO, Al2O3/Al:ZnO/VO2 and Al2O3/VO2/Al:ZnO thin-film devices, the infrared optical spectra of the devices can be real-time manipulated by an external voltage. The main effect of joule heating and assistant effect of electric field are illustrated in this work. It is believed that the results will add a more thorough understanding in the application of the VO2/transparent conductive film device.

4.
ACS Appl Mater Interfaces ; 9(1): 658-667, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27982560

RESUMO

We report on the sensitizing of CdS-coated ZnO (CdS/ZnO) nanorods (NRs) by Ag nanoparticles (NPs) embedded between the CdS coating and the ZnO nanorod and the improved optical and photoelectrochemical properties of the Ag NP-sandwiched nanostructure CdS/Ag/ZnO NRs. The CdS/Ag/ZnO NRs were fabricated by growing Ag NPs on hydrothermally grown ZnO NRs and subsequently depositing CdS coatings followed by subsequent N2 annealing. The structure of the fabricated CdS/Ag/ZnO NRs was characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and Raman backscattering, revealing that the ZnO NRs and the CdS coatings are both structured with hexagonal wurtzite and the Ag NPs contact well with ZnO and CdS. Optical properties were evaluated by measuring optical absorption and photoluminescence, showing that the Ag NPs behave well as sensitizers for optical property improvement and the CdS/Ag/ZnO NRs exhibit better photoresponse in a wide spectral region than CdS/ZnO because of plasmon-enhanced absorption due to the embedment of Ag NPs. The Ag NPs also serve as electron relays from CdS to ZnO, facilitating electron transfer from the CdS coatings to the ZnO NRs. The excellent photoresponse and efficient electron transfer make the CdS/Ag/ZnO NRs highly photoelectrochemically active. The CdS/Ag/ZnO NRs fabricated on indium-tin oxide present much better photoelectrochemical performance as photoanodes working in the visible region than CdS/ZnO NRs without Ag NPs. Under visible illumination, a maximum optical-to-chemical conversion efficiency of 3.13% is obtained for CdS/Ag/ZnO NR photoanodes against 1.35% for CdS/ZnO NR photoanodes.

5.
Nanoscale Res Lett ; 11(1): 104, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26911568

RESUMO

One-dimensional heterogeneous nanostructures in the form of ZnO-coated TiO2 nanotubes (ZnO/TiO2 NTs) were fabricated by atomic layer deposition of an ultrathin ZnO coating on electrochemical anodization-formed TiO2 nanotubes (NTs) with the thickness of ZnO coating being precisely controlled at atomic scale, and the photoelectrochemical activity of the fabricated ZnO/TiO2 NTs and the influence of ZnO coating and its thickness were studied. The structures of TiO2 NTs and ZnO coatings were characterized by X-ray diffraction, Raman backscattering spectroscopy, and transmission electron microscopy. The photoelectrochemical activity was studied through the measurements of electrochemical impendence, flat-band potential, and transient photocurrent density. The TiO2 NTs exhibit anatase structure, and the ZnO coatings are structured with hexagonal wurtzite. The photoelectrochemical activity of the ZnO/TiO2 NTs is strongly dependent on the thickness of ZnO coating. ZnO/TiO2 NTs with a thinner rather than a thicker ZnO coating exhibit better photoelectrochemical activity with reduced charge transfer resistance, increased negative flat-band potentials, and enhanced photocurrent densities. Under visible illumination, an increase of about 60 % in the photoelectrochemical activity is obtained for ZnO/TiO2 NTs with an about 2-nm-thick ZnO coating.

6.
Phys Chem Chem Phys ; 18(8): 6239-46, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26853967

RESUMO

The metal-insulator transition (MIT) is of key importance for understanding the fundamental electronic interaction that determines the physical properties of vanadium dioxide (VO2) film. Here, the spectral slopes of transmittance and reflectance in the infrared absorption region (about 0.62-1.63 eV) and the interband electronic transitions for VO2 films with thicknesses of 27, 40 and 63 nm have been investigated. The potential applications of the spectral slopes were presented in detail. It is found that the variation of resistivity and transmittance increases with the spectral slopes of transmittance and reflectance. It is surprising that the resistivity of the VO2 film with a thickness of 27 nm is larger than that of the VO2 film with a thickness of 40 nm in the metal state. In addition, an anomalous counterclockwise thermal hysteresis with higher energy from the interband electronic transition was also found during the MIT process for the thinnest film. It is believed that this remarkable phenomenon could be related to the correlation effects in the rutile phase, which could lead to the splitting of the a1g band into Hubbard bands. The lower Hubbard band would result in an electronic transition blue-shift with the empty e band, which can explain the origin of the counterclockwise thermal hysteresis and the abnormal resistivity in the metal state.

7.
Nanoscale Res Lett ; 9(1): 650, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25520597

RESUMO

Single-crystalline Cu7In3/CuIn0.8Ga0.2Se2 (CI/CIGS) core/shell nanowires are fabricated by pulsed laser deposition with Ni nanoparticles as catalyst. The CI/CIGS core/shell nanowires are made up of single-crystalline CI cores surrounded by single-crystalline CIGS shells. The CI/CIGS nanowires are grown at a considerably low temperature (350°C ~ 450°C) by vapor-liquid-solid mode combined with vapor-solid mode. The distribution density of the nanowires increases with the increasing of the deposition duration, and the substrate temperature determines the lengths of the nanowires. The U-V absorption spectra of the CIGS thin films with and without the CI/CIGS core/shell nanowires demonstrate that the CI/CIGS nanowires can remarkably enhance the absorption of CIGS thin films in the spectrum range of 300 to 900 nm. PACS: 61.46. + w; 61.41.e; 81.15.Fg; 81.07.b.

8.
Nanoscale Res Lett ; 9(1): 308, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24994961

RESUMO

Evenly separated crystalline CuIn0.8Ga0.2Se2 (CIGS) nanoparticles are deposited on ITO-glass substrate by pulsed laser deposition. Such CIGS layers are introduced between conjugated polymer layers and ITO-glass substrates for enhancing light absorbance of polymer solar cells. The P3HT:PCBM absorbance between 300 and 650 nm is enhanced obviously due to the introduction of CIGS nanoparticles. The current density-voltage curves of a P3HT:PCBM/CIGS solar cell demonstrate that the short-circuit current density is improved from 0.77 to 1.20 mA/cm(2). The photoluminescence spectra show that the excitons in the polymer are obviously quenched, suggesting that the charge transfer between the P3HT:PCBM and CIGS occurred. The results reveal that the CIGS nanoparticles may exhibit the localized surface plasmon resonance effect just as metallic nanostructures. PACS: 61.46. + w; 61.41.e; 81.15.Fg; 81.07.b.

9.
Opt Express ; 22(7): 8617-23, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718232

RESUMO

Heterogenous nanostructures shaped with CdS covered ZnO (ZnO/CdS) core/shell nanorods (NRs) are fabricated on indium-tin-oxide by pulsed laser deposition of CdS on hydrothermally grown ZnO NRs and characterized through morphology examination, structure characterization, photoluminescence and optical absorption measurements. Both the ZnO cores and the CdS shells are hexagonal wurtzite in structure. Compared with bare ZnO NRs, the fabricated ZnO/CdS core/shell NRs present an extended photo-response and have optical properties corresponding to the two excitonic band-gaps of ZnO and CdS as well as the effective band-gap formed between the conduction band minimum of ZnO and the valence band maximum of CdS.

10.
Nanoscale Res Lett ; 9(1): 135, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24650350

RESUMO

Light-absorbing and electrically conductive binary CNx nanocone (CNNC) arrays have been fabricated using a glow discharge plasma-assisted reaction deposition method. The intact CNNCs with amorphous structure and central nickel-filled pipelines could be vertically and neatly grown on nickel-covered substrates according to the catalyst-leading mode. The morphologies and composition of the as-grown CNNC arrays can be well controlled by regulating the methane/nitrogen mixture inlet ratio, and their optical absorption and resistivity strongly depend on their morphologies and composition. Beside large specific surface area, the as-grown CNNC arrays demonstrate high wideband absorption, good conduction, and nice wettability to polymer absorbers.

11.
Nanoscale Res Lett ; 9(1): 91, 2014 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-24559455

RESUMO

CdS nanoneedles with different morphologies, structures, and growth modes have been grown on Ni-coated Si(100) surface under different experimental conditions by pulsed laser deposition method. The effects of catalyst layer, substrate temperature, and laser pulse energy on the growth of the CdS nanoneedles were studied in detail. It was confirmed that the formation of the molten catalyst spheres is the key to the nucleation of the CdS nanoneedles by observing the morphologies of the Ni catalyst thin films annealed at different substrate temperatures. Both the substrate temperature and laser pulse energy strongly affected the growth modes of the CdS nanoneedles. The secondary growth of the smaller nanoneedles on the top of the main nanoneedles was found at appropriate conditions. A group of more completed pictures of the growth modes of the CdS nanoneedles were presented.

12.
Nanoscale Res Lett ; 9(1): 31, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24428949

RESUMO

Aligned ZnO/ZnSe core/shell nanorods (NRs) with type-II energy band alignment were fabricated by pulsed laser deposition of ZnSe on the surfaces of hydrothermally grown ZnO NRs. The obtained ZnO/ZnSe core/shell NRs are composed of wurtzite ZnO cores and zinc blende ZnSe shells. The bare ZnO NRs are capable of emitting strong ultraviolet (UV) near band edge (NBE) emission at 325-nm light excitation, while the ZnSe shells greatly suppress the emission from the ZnO cores. High-temperature processing results in an improvement in the structures of the ZnO cores and the ZnSe shells and significant changes in the optical properties of ZnO/ZnSe core/shell NRs. The fabricated ZnO/ZnSe core/shell NRs show optical properties corresponding to the two excitonic band gaps of wurtzite ZnO and zinc blende ZnSe and the effective band gap between the conduction band minimum of ZnO and the valence band maximum ZnSe. An extended photoresponse much wider than those of the constituting ZnO and ZnSe and a multi-band photoluminescence including the UV NBE emission of ZnO and the blue NBE emission of ZnSe are observed.

13.
Opt Express ; 20(14): 14857-63, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22772180

RESUMO

We report on the photoluminescence (PL) and lasing characteristics of ZnO nanorod arrays (NRAs) fabricated by hydrothermal process on nanocrystalline ZnO seeded Si and post-growth annealing. The morphology of the ZnO NRAs was examined by field emission scanning electron microscopy and the structure was characterized by x-ray diffraction, Fourier-transform infrared and Raman scattering spectroscopy. The properties of light emission were studied by continuous wave (CW) and 30 ps pulsed ultraviolet excitation. The ZnO NRAs consist of aligned nanorods and are nanocrystalline with wurtzite structure and c-axis orientation. At room temperature, the ZnO NRAs are capable of emitting strong CW PL and pulsed stimulated emission, with the latter showing obvious lasing characteristics. The threshold for lasing was observed to be ~16 kW/cm(2).

14.
Appl Spectrosc ; 65(5): 522-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21513595

RESUMO

Plasma-assisted pulsed laser deposited zirconia (ZrO(2)) films were studied by Fourier transform infrared (FT-IR) and Raman spectroscopy for structural characterization and thermal stability in combination with optical characterization by spectroscopic ellipsometry and optical transmission measurements. Only the monoclinic ZrO(2) phase was positively identified from the infrared and Raman spectra of the as-deposited ZrO(2) films, which show excellent optical transparency from the ultraviolet to the near infrared as revealed by optical characterization. The as-deposited ZrO(2) films are free of any SiO(x) interfacial layer when deposited on silicon. The prepared ZrO(2) films exhibit good thermal stability in their structural, optical, and interfacial properties up to 900 °C. Upon annealing above 1100 °C, a silicon oxide interfacial layer forms due to the oxidation of the silicon substrate surface by the oxygen diffused from the oxide film to the silicon substrate at high temperatures.

15.
Phys Chem Chem Phys ; 13(13): 6211-22, 2011 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-21365094

RESUMO

Nanocrystalline iron-doped tin dioxide (Sn(1-x)Fe(x)O(2)) films with x from 0 to 0.2 were prepared on c-sapphire substrates by pulsed laser deposition. X-ray diffraction and Raman scattering analysis show that the films are of the rutile structure at low compositions and an impurity phase related to Fe(2)O(3) appears until the x is up to 0.2, suggesting the general change of lattice structure due to the Fe ion substitution. The dielectric functions are successfully determined from 0.0248 to 6.5 eV using the Lorentz multi-oscillator and Tauc-Lorentz dispersion models in the low and high photon energy regions, respectively. With increasing Fe composition, the highest-frequency transverse optical phonons E(u) shifts towards a lower energy side and can be well described by (608 - 178x) cm(-1). From the transmittance spectra, the fundamental absorption edge is found to be decreased with the Fe composition due to the joint contributions from SnO(2) and Fe(2)O(3). It can be observed that the doped films exhibit evident excitonic excitation features, which are strongly related to the Fe doping. Among them, the 6A(1g)→ 4T(2g) transition contributes to the onset of optical absorption. Moreover, the remarkable intensity reduction and a red-shift trend with the doping composition, except for the pure film, can be testified by the photoluminescence spectra. It can be concluded that the replacement of Sn with the Fe ion could induce the 2p-3d hybridization and result in the electronic band structure modification of the Sn(1-x)Fe(x)O(2) films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA