Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Stem Cell Res Ther ; 15(1): 131, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702793

RESUMO

BACKGROUND: Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) hold great therapeutic potential in regenerative medicine. Therefore, it is crucial to establish a Good Manufacturing Practice (GMP)-compliant methodology for the isolation and culture of WJ-MSCs. Through comprehensive research, encompassing laboratory-scale experiments to pilot-scale studies, we aimed to develop standardized protocols ensuring the high yield and quality of WJ-MSCs manufacturing. METHODS: Firstly, optimization of parameters for the enzymatic digestion method used to isolate WJ-MSCs was conducted. These parameters included enzyme concentrations, digestion times, seeding densities, and culture media. Additionally, a comparative analysis between the explant method and the enzymatic digestion method was performed. Subsequently, the consecutive passaging of WJ-MSCs, specifically up to passage 9, was evaluated using the optimized method. Finally, manufacturing processes were developed and scaled up, starting from laboratory-scale flask-based production and progressing to pilot-scale cell factory-based production. Furthermore, a stability study was carried out to assess the storage and use of drug products (DPs). RESULTS: The optimal parameters for the enzymatic digestion method were a concentration of 0.4 PZ U/mL Collagenase NB6 and a digestion time of 3 h, resulting in a higher yield of P0 WJ-MSCs. In addition, a positive correlation between the weight of umbilical cord tissue and the quantities of P0 WJ-MSCs has been observed. Evaluation of different concentrations of human platelet lysate revealed that 2% and 5% concentrations resulted in similar levels of cell expansion. Comparative analysis revealed that the enzymatic digestion method exhibited faster outgrowth of WJ-MSCs compared to the explant method during the initial passage. Passages 2 to 5 exhibited higher viability and proliferation ability throughout consecutive passaging. Moreover, scalable manufacturing processes from the laboratory scale to the pilot scale were successfully developed, ensuring the production of high-quality WJ-MSCs. Multiple freeze-thaw cycles of the DPs led to reduced cell viability and viable cell concentration. Subsequent thawing and dilution of the DPs resulted in a significant decrease in both metrics, especially when stored at 20-27 °C. CONCLUSION: This study offers valuable insights into optimizing the isolation and culture of WJ-MSCs. Our scalable manufacturing processes facilitate the large-scale production of high-quality WJ-MSCs. These findings contribute to the advancement of WJ-MSCs-based therapies in regenerative medicine.


Assuntos
Células-Tronco Mesenquimais , Geleia de Wharton , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Humanos , Geleia de Wharton/citologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Células Cultivadas , Proliferação de Células , Separação Celular/métodos , Separação Celular/normas
2.
Food Funct ; 15(4): 1994-2007, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38288526

RESUMO

The role of sniffing relative to immune function has attracted considerable attention. The present study investigated the immunomodulatory effects of peanut oil odor on cyclophosphamide (CTX)-induced immunosuppressed mice. The subset of mice subjected to prolonged (8 h) sniffing peanut oil odor (PL) demonstrated significantly elevated levels of agouti-related peptide, neuropeptide Y, and glutamate (p < 0.05), whereas it significantly down-regulated the level of γ-aminobutyric acid in the brain (p < 0.05). Furthermore, immunohistochemistry results indicated significantly increased expression of mGluR1/5 and decreased expression of GABABR in the hippocampus and hypothalamus (p < 0.05) of the PL group. Additionally, the PL group had significantly up-regulated expression levels of cAMP, Epac, Rap1, ERK1/2 and PKA (p < 0.05) and remarkably increased phosphorylation of CREB in the cAMP signaling pathway (p < 0.05), which influenced the central nervous system. Moreover, compared with CTX-induced mice, the percentages of peripheral blood T lymphocytes (CD3+CD4+ and CD3+CD8+) and the levels of splenic cytokines (IL-2, IL-4, and TNF-α) were significantly increased following PL treatment (p < 0.05). The PL group also showed significantly up-regulated expression levels of cAMP, p-p65, and p-IκBα in the spleen (p < 0.05) by western blot analysis. In summary, PL intervention significantly up-regulated the expression levels of cAMP in the brain (p < 0.05), with subsequent transfer of cAMP to the spleen which promoted phosphorylation of p65 and IκBα. This series of events enhanced the immunity of mice, which confirmed the regulatory effect of PL on the cAMP signaling pathway, thereby enhancing immune function via the brain-spleen axis.


Assuntos
Odorantes , Baço , Camundongos , Animais , Inibidor de NF-kappaB alfa , Óleo de Amendoim , Linhagem Celular , Transdução de Sinais/fisiologia , Encéfalo , Imunidade
3.
J Sci Food Agric ; 104(5): 2876-2887, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38018265

RESUMO

BACKGROUND: Pulmonary fibrosis (PF) is the terminal manifestation of a type of pulmonary disease, which seriously affects the respiratory function of the body, and with no effective cure for treatment. This study evaluated the effect of sea cucumber peptides (SCP) on bleomycin-induced SD rat PF. RESULTS: SCP can inhibit the PF induced by bleomycin. PF and SCP did not affect the food intake of rats, but PF reduced the body weight of rats, and SCP could improve the weight loss. SCP reduced lung index in PF rats in a dose-dependent manner. SCP significantly reduced IL-1ß, IL-6, TNF-α, α-SMA and VIM expression levels in lung tissue (P < 0.05), significantly decreased TGF-ß1 expression level in serum (P < 0.01) and the LSCP group and MSCP group had better inhibitory effects on PF than the HSCP group. Histomorphological results showed that SCP could ameliorate the structural damage of lung tissue, alveolar wall rupture, inflammatory cell infiltration, fibroblast proliferation and deposition of intercellular matrix and collagen fibers caused by PF. The improvement effect of the MSCP group was the most noteworthy in histomorphology. Metabolomics results showed that SCP significantly downregulated catechol, N-acetyl-l-histidine, acetylcarnitine, stearoylcarnitine, d-mannose, l-threonine, l-alanine, glycine, 3-guanidinopropionic acid, prostaglandin D2 and embelic acid d-(-)-ß-hydroxybutyric acid expression levels in lung tissue. CONCLUSION: SCP ameliorate bleomycin-induced SD rat PF. KEGG pathway analysis proved that SCP intervened in PF mainly via the lysosome pathway, with d-mannose as the key factor. © 2023 Society of Chemical Industry.


Assuntos
Fibrose Pulmonar , Animais , Ratos , Bleomicina/efeitos adversos , Bleomicina/metabolismo , Pulmão , Manose/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/tratamento farmacológico , Fibrose Pulmonar/genética , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/metabolismo , Treonina/química , Oligopeptídeos/química , Oligopeptídeos/metabolismo
4.
Huan Jing Ke Xue ; 44(10): 5769-5778, 2023 Oct 08.
Artigo em Chinês | MEDLINE | ID: mdl-37827792

RESUMO

This study aimed to elucidate the cadmium (Cd) concentration and transport characteristics of Pueraria thornsonii in farmland with different Cd pollution degrees, so as to provide a reference basis for phytoremediation of Cd-contaminated farmland. The multi-point experiments in farmland with different Cd pollution degrees[ω(Cd) 0.32-38.08 mg·kg-1] were conducted, and the biomass (dry weight), Cd content, accumulation, concentration, and transport of Cd in P. thornsonii tissues under the main growing period were assessed. According to the results, for P. thornsonii, the tuber dry weight ranged from 5.04 to 11.98 t·hm-2, biomass ranged from 13.21 to 29.07 t·hm-2, and Cd accumulation ranged from 15.74 to 106.03 g·hm-2in the study area. The pattern of Cd uptake by P. thornsonii showed that the main vine>leaf>lateral branches>basal part of sti>tuber. The Cd content in P. thornsonii tissues considerably increased with soil Cd content (P<0.05), whereas the biomass decreased significantly (P<0.05). The Cd concentration and transport factor of aboveground parts in P. thornsonii showed a trend of initially falling, then increasing and decreasing again, whereas the Cd enrichment and transport coefficient of tubers gradually decreased. Correlation analysis revealed that the amount of Cd in the soil was a major predictor of Cd accumulation in P. thornsonii. Under light to moderate Cd contamination, the commercial portion of P. thornsonii (arrowroot)[ω(Cd) 0.03-0.22 mg·kg-1] was less than the standard limit for medicinal plants (≤ 0.30 mg·kg-1). In P. thornsonii from moderately contaminated areas, the Cd concentration and transport factor of aboveground parts were 2.43-7.97 and 3.02-9.81, respectively. This indicates that P. thornsonii is a prospective plant ideal for remediating Cd-contaminated soil because of its high capacity to transfer and enrich Cd.


Assuntos
Pueraria , Poluentes do Solo , Cádmio/análise , Fazendas , Poluentes do Solo/análise , Solo , Biodegradação Ambiental
5.
J Mol Model ; 29(8): 263, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37495822

RESUMO

CONTEXT: Heavy metal ion removal from wastewater has become a global concern due to its extensive negative effects on human health and the environment. The density functional theory is employed to investigate the possibility of removing Pb2+, Hg2+, and Cd2+ ions from wastewater using nano-graphene. Researchers have shown that NG can efficiently remove heavy metals from media. Additionally, it was shown that the adsorption of Pb2+, Hg2+, and Cd2+ ions might reduce the large pristine NG (HOMO-LUMO) gap. METHODS: HSE06 may accurately represent NG electrical characteristics. The DFT-D3 method was also used to account for Van der Waals interactions in the present study. The results demonstrated that charge transfer and binding energy remained greater in cation-NG systems with greater electron transfer rates. Pb2+, Hg2+, and Cd2+ adsorption results indicated that Egap was significantly reduced by 68%, 15%, and 21%, respectively. The Pb2+@NG complex exhibited the strongest oscillator strength. This may be explained by the enormous occupation number difference between the 2px orbital of the C atoms and the 6 s orbital of the Pb2+ cations. The greater Ebin value of Pb2+@NG is consistent with the increased predicted redshifts (199 nm). DFT (hybrid functional HSE06) studies that rely on time showed that the relevant complexes have "ligand-to-metal charge transfer" excitations. In general, it was found that Pb2+@NG had the greatest k value, binding energy, redshifts, and charge transfer rate among the complexes. The theoretical insights of this study may influence experimental efforts to identify NG-based compounds that are effective and efficient at removing pollutants from wastewater.

6.
J Mol Model ; 29(7): 216, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37368127

RESUMO

CONTEXT: Hydrogen fluoride (HF) is extensively present in environmental and industrial pollutants. It may harm the health of humans and animals. This work evaluated the adsorption of an (HF)n linear chain (n = 1, 2, 3, and 4) onto an AlP nanocage through ab initio calculations for the evaluation of its performance in sensing and monitoring (HF)n within aqueous and gaseous media. METHODS: The present work adopted density functional theory (DFT) at the 6-311 G (d, p) basis set to analyze (HF)n linear chain adsorption onto AlP nanocages with the B3LYP functional. This paper examined the adsorption energy, configuration optimization, work function, and charge transfer. In addition, the contributions of the HF linear chain size to electronic properties and adsorption energy were measured. The dimer form of HF on the surface of AlP nanocages was found to have the highest stability based on the adsorption energy values. Once (HF)n was adsorbed onto the nanocage, the HOMO-LUMO energy gap experienced a large reduction from 3.87 to 3.03 eV, enhancing electrical conductivity. In addition, AlP nanocages may serve in the sensing of (HF)n under multiple environmental pollutants.

7.
Foods ; 12(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37238824

RESUMO

Melanoidins are considered to have several biological activities. In this study, black garlic melanoidins (MLDs) were collected using ethanol solution extraction; 0%, 20%, and 40% ethanol solutions were used for chromatography. Three kinds of melanoidins were produced by macroporous resin, named MLD-0, MLD-20, and MLD-40. The molecular weight was determined, and the infrared and microscopic structures were studied. In addition, Balb/c mice were induced with cyclophosphamide (CTX) to establish an immune deficiency model to evaluate the immune efficacy of black garlic melanoidins (MLDs). The results showed that MLDs restored the proliferation and phagocytosis ability of macrophages, and the proliferation activity of B lymphocytes in the MD group was 63.32% (♀) and 58.11% (♂) higher than that in the CTX group, respectively. In addition, MLDs alleviated the abnormal expression of serum factors such as IFN-γ, IL-10, and TNF-α. 16SrDNA sequencing of intestinal fecal samples of mice showed that MLDs changed the structure and quantity of intestinal flora, and especially that the relative abundance of Bacteroidaceae was significantly increased. The relative abundance of Staphylococcaceae was significantly reduced. These results showed that MLDs improved the diversity of intestinal flora in mice, and improved the adverse state of immune organs and immune cells. The experiments confirm that black garlic melanoidins have potential value in immune activity, which provides an important basis for the development and utilization of melioidosis.

8.
Ying Yong Sheng Tai Xue Bao ; 34(3): 708-716, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37087654

RESUMO

The size of particles determines the adsorption reaction. In this study, three different particle sizes of biochar (0.25-1 mm, 0.075-0.25 mm, <0.075 mm) were produced from rapeseed straw (SBC) and chicken manure (MBC). The biochar was mixed with high phosphorus (P) soil and low P soil and then incubated for 30 days. We conducted isothermal P sorption and desorption experiments to evaluate the effects of biochar particle size on sorption-desorption characteristics of soil P, and analyzed soil properties associated with P sorption. The results showed that P sorption capacity of SBC and MBC in the water system was highest for the smallest particle size (<0.075 mm) (SBC: 43125 mg·kg-1, MBC: 20083 mg·kg-1), followed by the intermediate particle size (0.075-0.25 mm) (SBC: 37376 mg·kg-1, MBC: 13199 mg·kg-1) and the largest particle size (0.25-1 mm) (SBC: 27749 mg·kg-1, MBC: 12251 mg·kg-1). However, there was little difference in soil P sorption between the three particle sizes of the same biochar in the soil system. In comparison with no biochar treatment, the addition of SBC increased the Langmuir P sorption maximum (Smax) by 236.8%-755.7%, and decreased soil P desorption rate. The addition of MBC increased Smax, but the enhancement was less than that of SBC. Soil P desorption rate was increased by 7.2%-295.9%. Both SBC and MBC significantly increased the contents of soil total P, available P, and exchangeable calcium (Ca) and magnesium (Mg). The increases in Ca and Mg contents due to biochar addition was 64.0%-257.1% (SBC) and 39.1%-205.3% (MBC), respectively. The contents of soil exchangeable Ca and Mg were positively correlated with Smax. These results suggested that biochar particle size had little effect on soil P sorption, but the enrichment of Ca and Mg due to biochar addition played a critical role in regulating soil P sorption. The rapeseed straw biochar had a high adsorption capacity for soil P, making it suitable for improving the P fixation capacity of soil rich in P and reducing the loss of excess P. Chicken manure biochar could be used to improve the P availability of low P soils and increase the contents of available P.


Assuntos
Poluentes do Solo , Solo , Animais , Tamanho da Partícula , Fósforo , Esterco , Carvão Vegetal , Adsorção , Galinhas , Cálcio
9.
J Sci Food Agric ; 103(11): 5376-5387, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37060319

RESUMO

BACKGROUND: Black garlic (Allium sativum L.) melanoidins (MLDs) are produced by Maillard reaction under high temperature and high humidity, and has a variety of biological activities. The aim of this study was to analyze the structural characteristics and investigate α-amylase and α-glucosidase in vitro inhibitory activity of black garlic MLDs. RESULTS: Spectroscopic and chemical analysis revealed that black garlic MLDs were heterogeneous macromolecular polymers with a skeletal structure similar to sugar chains. Molecular weight distribution and 3DEEM fluorescence showed that black garlic MLDs were composed of high-molecular-weight colorants with strong fluorescence properties. The polarity of black garlic MLDs was related to the fluorescence groups. The results of physicochemical properties proved that the polarity difference of black garlic MLDs was related to the elemental composition, resulting in differences in fluorescence, thermodynamic and apparent characteristics. MLDs with higher levels of fluorescent intensity (BG20 and BG40) had stronger inhibitory effects on α-amylase and α-glucosidase than BGW, and hydrolysis of fluorescent groups attenuated the inhibitory activity. The median inhibitory concentration (IC50 ) of black garlic MLDs against enzymes was positively correlated with the concentration, and the kinetic results detected non-competitive and mixed types of inhibition. CONCLUSION: High-molecular-weight fluorescent components of black garlic MLDs played a crucial role in the inhibitory activities of α-amylase and α-glucosidase, and the inhibitory ability was positively correlated with concentration. Black garlic MLDs had the potential to block postprandial glucose rise. © 2023 Society of Chemical Industry.


Assuntos
Alho , Alho/química , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Fenômenos Químicos
10.
Molecules ; 27(23)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36500586

RESUMO

The aim of this study was to evaluate the effect of oat ß-glucan on the formation mechanism, microstructure and physicochemical properties of konjac glucomannan (KGM) composite hydrogel. The dynamic rheology results suggested that the addition of oat ß-glucan increased the viscoelastic modulus of the composite hydrogel, which was conducive to the formation of a stronger gel network. Gelling force experiments showed that hydrogen bonds and hydrophobic interactions participated in the formation of the gel network. Textural profile analysis results found that the amount of oat ß-glucan was positively correlated with the elasticity, cohesiveness and chewiness of the composite hydrogel. The water-holding capacity of the composite hydrogel was enhanced significantly after the addition of oat ß-glucan (p < 0.05), which was 18.3 times that of the KGM gel. The thermal stability of KGM gel was enhanced after the addition of oat ß-glucan with the increase in Tmax being approximately 30 °C. Consequently, a composite hydrogel based on KGM and oat ß-glucan was a strategy to overcome pure KGM gel shortcomings.


Assuntos
Hidrogéis , beta-Glucanas , Hidrogéis/química , Mananas/química , Reologia , Elasticidade
11.
Clin Cardiol ; 44(7): 994-1001, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34037246

RESUMO

BACKGROUND: Previous studies have shown that inflammation plays an important role in atherosclerosis and cardiovascular disease. Platelet to lymphocyte ratio (PLR) has been reported as a novel inflammatory marker. However, it is not clear whether PLR is associated with short-term all-cause mortality in critically ill patients with non-ST-segment elevation myocardial infarction (NSTEMI). METHODS: The data for the study is from the Medical Information Mart for Intensive Care III database. The primary outcome in our study was 28-day mortality. Kapan-Meier curve, lowess smoother curve, and multivariate Cox regression models were used to determine whether the association between PLR and 28-day mortality of critically ill patients with NSTEMI. RESULTS: A total of 1273 critically ill patients with NSTEMI were included in this analysis. Kapan-Meier curve and lowess smoother curve show that high PLR is associated with an increased risk of 28-day all-cause mortality. The study population is divided into two groups according to the cut-off value of PLR level. In the Cox model, high PLR levels (PLR≥195.8) were significantly associated with increased 28-day mortality (HR 1.54; 95%CI 1.09-2.18, p = .013). In quartile analyses, the HR (95% CI) for the third (183 ≤ PLR < 306) and fourth quartile (PLR≥306) was 1.55 (1.05-2.29) and 1.61 (1.03-2.52), respectively, compared to the reference group(111 ≤ PLR < 183). In subgroup analyses, there is no interaction effect in most of the subgroups except for respiratory failure and vasopressor use. CONCLUSION: High PLR is associated with an increased risk of short-term mortality in critically ill patients with NSTEMI.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio sem Supradesnível do Segmento ST , Infarto do Miocárdio com Supradesnível do Segmento ST , Plaquetas , Humanos , Linfócitos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio sem Supradesnível do Segmento ST/diagnóstico , Prognóstico , Estudos Retrospectivos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico
12.
J Agric Food Chem ; 69(10): 3069-3081, 2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33661003

RESUMO

The purpose of this study is to explore the effects of different molecular weight black garlic melanoidins (MLDs) on high fat diet (HFD) induced dysrhythmia of intestinal microorganisms. The results showed that a HFD disturbed the periodic fluctuation of the gut microbiome and that oral gavage of low molecular weight melanoidin (LMM) or high molecular weight melanoidin (HMM) reversed these cyclical variations in part, which resulted in an increase in the number of bacteria producing short-chain fatty acids (SCFAs) and a decrease in the oscillation of inflammation-related bacteria within a specific time period over the course of 1 day. Moreover, structural analysis showed different structure characterizations of LMM and HMM, which are related to the differences in flora oscillation. Therefore, the data showed that LMM and HMM relieve the circadian rhythm disorder of intestinal microbiota induced by a HFD in mice, which supported the further study of MLDs as a new dietary assistant strategy to improve chronic diseases.


Assuntos
Disbiose , Alho , Animais , Dieta Hiperlipídica/efeitos adversos , Disbiose/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Peso Molecular , Polímeros
13.
Food Chem ; 340: 127934, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32890858

RESUMO

As the important compounds in black garlic, the physicochemical properties and bioactivities of melanoidin (MLD) were investigated in this study. The results showed that MLD possessed strong metal-ion chelating capacity and radical scavenging activities which were positively correlative with molecular weight (MW). During the simulated digestion in vitro, the ultraviolet absorption, browning degree and MW distribution of MLD remained the same as initial. It proved that the MLD from black garlic could be indigestible like the dietary fiber with little loss of volatile compounds and polysaccharides. Remarkably, the bioactivities of MLD were reduced significantly under the treatment of α-amylase or hydrochloric acid, while they were stable and retained over 60% after adding pepsin and pancreatin. This study provides fundamental evidences for further research and widely application of MLD and black garlic in the production of functional food or food additives.


Assuntos
Antioxidantes/química , Alho/química , Polímeros/química , Polímeros/farmacologia , Digestão , Ácido Clorídrico/química , Quelantes de Ferro/química , Peso Molecular , Polímeros/farmacocinética , alfa-Amilases/química
14.
Food Funct ; 11(11): 9585-9598, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33151233

RESUMO

The objective of this study is to assess the potential anti-obesity effects of black garlic melanoidins (MLDs) and gut microbiota changes in an animal model, hypothesizing that the effects of oral administration of MLDs can be partially mediated by the modulation of intestinal microbiota via inhibiting the formation of lipopolysaccharides (LPS) and promoting the production of short-chain fatty acids (SCFAs). The effects of MLDs in C57BL/6J mice with high-fat diet (HFD)-induced obesity were investigated for 12 weeks with low (50 mg kg-1 day-1), medium (100 mg kg-1 day-1) and high (200 mg kg-1 day-1) doses. The results indicated that oral administration of MLDs markedly reduced high fat diet-induced weight gain and white adipose tissue weights and reversed glucose tolerance, especially at high doses. Besides, MLDs could alleviate dyslipidaemia, significantly suppress hepatic lipid accumulation and steatosis and effectively ameliorate lipid metabolism. The plasma LPS reduced significantly and the SCFAs increased in a dose-dependent manner. The MLDs could down-regulate the expression of fatty acid synthase (FAS) and interleukin-6 (IL-6) and up-regulate the expression of adipose triacylglyceride lipase (ATGL) and hormone sensitive lipase (HSL) in adipose tissues and livers at mRNA levels. Moreover, after the oral administration of MLDs, the intestinal microbial environment improved in the sense that bacterial diversity and richness increased. Intervention with MLDs modified the gut microbiota in mice with HFD-induced obesity, increasing the number of SCFA-producing bacteria (Bacteroidaceae) and reducing opportunistic pathogens (Enterobacteriaceae and Desulfovibrionaceae). An increased abundance of other probiotics including Lactobacillaceae and Akkermansiaceae was also observed. In conclusion, MLDs could improve glucose tolerance, induce the production of SCFAs and inhibit the production of endotoxin LPS, most likely mediated by modulating the gut microbiota. Therefore, it seems that MLDs exhibit anti-obesity effects and might be used as potential agents against obesity.


Assuntos
Dieta Hiperlipídica , Alho , Obesidade/prevenção & controle , Polímeros/uso terapêutico , Administração Oral , Animais , Alimento Funcional , Microbioma Gastrointestinal/efeitos dos fármacos , Lipopolissacarídeos/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Polímeros/administração & dosagem , Polímeros/farmacologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-30587815

RESUMO

With irrigation using waste water, application of sewage sludge, and development of mine exploration, copper (Cu) contamination in some paddy fields has become increasingly serious. A greenhouse pot experiment was conducted using a factorial design with three sulfur (S) application rates (i.e., 0, 0.013, and 0.026 g S kg-1 soil) and three silicon (Si) application rates (i.e., 0, 0.05, and 0.1 g Si kg-1 soil) to test the effect of co-amendment of S and Si on alleviating Cu contamination in paddy soil. There were significant interaction effects between S and Si on soil Cu speciation and Cu uptake by rice plants (except brown rice). Sulfur addition decreased the content of soil-exchangeable Cu, whereas Si addition decreased the content of soil-reducible Cu, suggesting that co-amendment of S and Si generally reduced Cu availability. Copper was biominimized in the soil-rice plant system and rice root had the greatest Cu concentration (163⁻285 mg kg-1). Co-amendment of S and Si decreased the translocation of Cu from soil to rice root, possibly due to decreased soil Cu mobility and enhancement of the formation of iron plaque on rice root. Co-amendment of S-Si at a rate of 0.013 (S)⁻0.1 (Si) g kg-1 soil, respectively, was the optimal among all treatments.


Assuntos
Cobre/toxicidade , Oryza/efeitos dos fármacos , Silício/química , Poluentes do Solo/toxicidade , Enxofre/química , Disponibilidade Biológica , Cobre/isolamento & purificação , Cobre/metabolismo , Recuperação e Remediação Ambiental , Ferro/metabolismo , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Solo/química , Poluentes do Solo/isolamento & purificação , Poluentes do Solo/metabolismo
16.
Neoplasia ; 19(6): 509-518, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28535453

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA with a 5-year survival rate less than 3% to 5%. Gemcitabine remains as a standard care for PDAC patients. Although protein neddylation is abnormally activated in many human cancers, whether neddylation dysregulation is involved in PDAC and whether targeting neddylation would sensitize pancreatic cancer cells to gemcitabine remain elusive. Here we report that high expression of neddylation components, NEDD8 and NAE1, are associated with poor survival of PDAC patients. Blockage of neddylation by MLN4924, a small molecule inhibitor targeting this modification, significantly sensitizes pancreatic cancer cells to gemcitabine, as evidenced by reduced growth both in monolayer culture and soft agar, reduced clonogenic survival, decreased invasion capacity, increased apoptosis, G2/M arrest, and senescence. Importantly, combinational treatment of MLN4924-gemcitabine near completely suppressed in vivo growth of pancreatic cancer cells. Mechanistically, accumulation of NOXA, a pro-apoptotic protein and ERBIN, a RAS signal inhibitor, appears to play, at least in part, a causal role in MLN4924 chemo-sensitization. Our study demonstrates that neddylation modification is a valid target for PDAC, and provides the proof-of-concept evidence for future clinical trial of MLN4924-gemcitabine combination for the treatment of pancreatic cancer patients.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Proteína NEDD8/genética , Enzimas Ativadoras de Ubiquitina/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adulto , Idoso , Apoptose/efeitos dos fármacos , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclopentanos/administração & dosagem , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Pirimidinas/administração & dosagem , Ubiquitinas/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
17.
Biochem Biophys Res Commun ; 488(1): 1-5, 2017 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-28450112

RESUMO

It has been reported that MLN4924 can inhibit cell growth and metastasis in various kinds of cancer. We have reported that MLN4924 is able to inhibit angiogenesis through the induction of cell apoptosis both in vitro and in vivo models. Moreover, Neddylation inhibition using MLN4924 triggered the accumulation of pro-apoptotic protein NOXA in Human umbilical vein endothelial cells (HUVECs). However, the mechanism of MLN4924-induced NOXA up-regulation has not been addressed in HUVECs yet. In this study, we investigated how MLN4924 induced NOXA expression and cellular apoptosis in HUVECs treated with MLN4924 at indicated concentrations. MLN4924-induced apoptosis was evaluated by Annexin V-FITC/PI analysis and expression of genes associated with apoptosis was assessed by Quantitative RT-PCR and western blotting. As a result, MLN4924 triggered NOXA-dependent apoptosis in a dose-dependent manner in HUVECs. Mechanistically, inactivation of Neddylation pathway caused up-regulation of activating transcription factor 4 (ATF-4), a substrate of Cullin-Ring E3 ubiquitin ligases (CRL). NOXA was subsequently transactivated by ATF-4 and further induced apoptosis. More importantly, knockdown of ATF-4 by siRNA significantly decreased NOXA expression and apoptotic induction in HUVECs. In summary, our study reveals a new mechanism underlying MLN4924-induced NOXA accumulation in HUVECs, which may help extend further study of MLN4924 for angiogenesis inhibition treatment.


Assuntos
Fator 4 Ativador da Transcrição/metabolismo , Apoptose/efeitos dos fármacos , Ciclopentanos/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Pirimidinas/farmacologia , Regulação para Cima/efeitos dos fármacos , Células Cultivadas , Ciclopentanos/administração & dosagem , Ciclopentanos/química , Relação Dose-Resposta a Droga , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Estrutura Molecular , Pirimidinas/administração & dosagem , Pirimidinas/química , Relação Estrutura-Atividade
18.
Oncotarget ; 7(16): 22873-82, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27013582

RESUMO

Previous studies have shown that strains of Salmonella typhimurium specifically target tumors in mouse models of cancer. In this study, we report that tumor-targeting Salmonella typhimurium A1-R (A1-R) or VNP20009 induced autophagy in human cancer cells, which serves as a defense response. Functionally, by knockdown of essential autophagy genes Atg5 or Beclin1 in bacteria-infected cancer cells, the autophagy pathway was blocked, which led to a significant increase of intracellular bacteria multiplication in cancer cells. Genetic inactivation of the autophagy pathway enhanced A1-R or VNP20009-mediated cancer cell killing by increasing apoptotic activity. We also demonstrate that the combination of pharmacological autophagy inhibitors chloroquine (CQ) or bafilomycin A1 (Baf A1) with tumor-targeting A1-R or VNP20009 significantly enhanced cancer-cell killing compared with Salmonella infection alone. These findings provide a proof-of-concept of combining autophagy inhibitors and tumor-targeting Salmonella to enhance cancer-cell killing.


Assuntos
Antineoplásicos/farmacologia , Autofagia , Neoplasias/microbiologia , Infecções por Salmonella , Linhagem Celular Tumoral , Humanos , Salmonella typhimurium
19.
Nat Neurosci ; 18(8): 1084-93, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26147533

RESUMO

Dopamine (DA) homeostasis is essential for a variety of brain activities. Dopamine transporter (DAT)-mediated DA reuptake is one of the most critical mechanisms for normal DA homeostasis. However, the molecular mechanisms underlying the regulation of DAT activity in the brain remain poorly understood. Here we show that the Rho-family guanine nucleotide exchange factor protein Vav2 is required for DAT cell surface expression and transporter activity modulated by glial cell line-derived neurotrophic factor (GDNF) and its cognate receptor Ret. Mice deficient in either Vav2 or Ret displayed elevated DAT activity, which was accompanied by an increase in intracellular DA selectively in the nucleus accumbens. Vav2(-/-) mice exposed to cocaine showed reduced DAT activity and diminished behavioral cocaine response. Our data demonstrate that Vav2 is a determinant of DAT trafficking in vivo and contributes to the maintenance of DA homeostasis in limbic DA neuron terminals.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Sistema Límbico/metabolismo , Núcleo Accumbens/metabolismo , Proteínas Proto-Oncogênicas c-ret/metabolismo , Transdução de Sinais/fisiologia , Animais , Comportamento Animal/efeitos dos fármacos , Cocaína/farmacologia , Homeostase , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transporte Proteico , Proteínas Proto-Oncogênicas c-vav
20.
Artigo em Inglês | MEDLINE | ID: mdl-24110425

RESUMO

A dual-mode electrochemical measurement and analysis system is proposed. This system includes a dual-mode chip, which was designed and fabricated by using TSMC 0.35 µm 3.3 V/5 V 2P4M mixed-signal CMOS process. Two electrochemical measurement and analysis methods, chronopotentiometry and voltammetry, can be performed by using the proposed chip and system. The proposed chip and system are verified successfully by performing voltammetry and chronopotentiometry on solutions.


Assuntos
Técnicas Eletroquímicas/instrumentação , Dispositivos Lab-On-A-Chip , Desenho de Equipamento , Potenciometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA