Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
ACS Nano ; 17(22): 22355-22370, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37930078

RESUMO

Burns are among the most common causes of trauma worldwide. Reducing the healing time of deep burn wounds has always been a major challenge. Traditional dressings not only require a lengthy medical procedure but also cause unbearable pain and secondary damage to patients. In this study, we developed an exudate-absorbing and antimicrobial hydrogel with a curcumin-loaded magnesium polyphenol network (Cur-Mg@PP) to promote burn wound healing. That hydrogel was composed of an ε-poly-l-lysine (ε-PLL)/polymer poly(γ-glutamic acid) (γ-PGA) hydrogel (PP) and curcumin-loaded magnesium polyphenol network (Cur-Mg). Because of the strong water absorption property of ε-PLL and γ-PGA, Cur-Mg@PP powder can quickly absorb the wound exudate and transform into a moist and viscous hydrogel, thus releasing payloads such as magnesium ion (Mg2+) and curcumin (Cur). The released Mg2+ and Cur demonstrated good therapeutic efficacy on analgesic, antioxidant, anti-inflammation, angiogenesis, and tissue regeneration. Our findings provide a strategy for accelerating burn wound healing.


Assuntos
Anti-Infecciosos , Queimaduras , Curcumina , Humanos , Curcumina/farmacologia , Curcumina/uso terapêutico , Hidrogéis/uso terapêutico , Magnésio , Cicatrização , Anti-Infecciosos/uso terapêutico , Queimaduras/tratamento farmacológico
2.
Chem Soc Rev ; 52(12): 3973-3990, 2023 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-37254686

RESUMO

Living systems are composed of a complex network of bioactive small molecules, proteins, ions and electrons, which present a wealth of opportunities for researchers to explore. Recently, organic chemists have developed a keen interest to move chemical reactions from laboratory flasks into living systems. This offers a new avenue for addressing challenges in current organic chemistry, expands the range of chemical transformations accessible to living systems, and provides a versatile tool for understanding and manipulating living systems. In this tutorial review, we include both the fundamental mechanisms and specific examples of how chemical reactions that typically occur outside of the biological context can be adapted for use within living systems. We also highlight the use of the resulting functional organic materials for biomedical applications including but not limited to imaging, therapy, theranostics and organic electronics. Finally, we discuss current challenges and future perspectives in this exciting field. We envision this tutorial review will serve as a guide for designing new chemical reactions and pathways in living systems that can expand the range of biological processes and functions and will accelerate the development of new biomaterials, biocatalysts, and therapeutics for precision medicine and other social needs.


Assuntos
Química Orgânica , Proteínas , Proteínas/química , Eletrônica
3.
Adv Mater ; 35(25): e2210876, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36870077

RESUMO

Metallomodulation cell death strategies are extensively investigated for antitumor therapy, such as cuproptosis, ferroptosis, and chemodynamic therapy (CDT). Undoubtedly, the accurate and specific elevation of metal ions levels in cancer cells is key to boosting their therapeutic index. Herein, a programmably controllable delivery system based on croconium dye (Croc)-ferrous ion (Fe2+ ) nanoprobes (CFNPs) is developed for multiscale dynamic imaging guided photothermal primed CDT. The Croc, with kinds of electron-rich iron-chelating groups, can form the Croc-Fe2+ complex with a precise stoichiometry of 1:1 to steadily maintain the valence state of Fe2+ . The CFNPs can achieve pH-responsive visualization and accurate Fe2+ release in cancerous tissues under the coactivation of "dual-key" stimulation of "acidity and near-infrared (NIR) light". The acidic tumor microenvironment actuates NIR fluorescence/photoacoustic imaging and photothermal properties of CFNPs. Sequentially, under exogenous NIR light, the CFNPs enable in vivo accurate visualization of Croc-Fe2+ complex delivery for photothermal primed Fe2+ release, thus achieving CDT of tumors. By leveraging multiscale dynamic imaging technologies, the complicated spatiotemporal release of Fe2+ is sketched in a programmably controllable manner, and the domino effect of tumor pH level, photothermal effect, and CDT is also revealed, endowing customized feedback of the therapeutic panorama within the disease microenvironment.


Assuntos
Nanopartículas , Neoplasias , Humanos , Nanopartículas/química , Fototerapia/métodos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/terapia , Terapia Combinada , Ferro , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Small ; 19(21): e2206441, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36799196

RESUMO

Although photothermal therapy (PTT) can noninvasively kill tumor cells and exert synergistic immunological effects, the immune responses are usually harmed due to the lack of cytotoxic T cells (CTLs) pre-infiltration and co-existing of intricate immunosuppressive tumor microenvironment (TME), including the programmed cell death ligand 1 (PD-L1)/cluster of differentiation 47 (CD47)/regulatory T cells (Tregs)/M2-macrophages overexpression. Indoleamine 2, 3-dioxygenase inhibitor (NLG919) or bromodomain extra-terminal inhibitor (OTX015) holds great promise to reprogram suppressive TME through different pathways, but their collaborative application remains a formidable challenge because of the poor water solubility and low tumor targeting. To address this challenge, a desirable nanomodulator based on dual immune inhibitors loaded mesoporous polydopamine nanoparticles is designed. This nanomodulator exhibits excellent biocompatibility and water solubility, PTT, and bimodal magnetic resonance/photoacoustic imaging abilities. Owing to enhanced permeability and retention effect and tumor acidic pH-responsiveness, both inhibitors are precisely delivered and locally released at tumor sites. Such a nanomodulator significantly reverses the immune suppression of PD-L1/CD47/Tregs, promotes the activation of CTLs, regulates M2-macrophages polarization, and further boosts combined therapeutic efficacy, inducing a strong immunological memory. Taken together, the nanomodulator provides a practical approach for combinational photothermal-immunotherapy, which may be further broadened to other "immune cold" tumors.


Assuntos
Nanopartículas , Neoplasias , Humanos , Antígeno B7-H1 , Antígeno CD47 , Fototerapia/métodos , Imunoterapia , Neoplasias/terapia , Água , Microambiente Tumoral , Linhagem Celular Tumoral
5.
Bioact Mater ; 24: 463-476, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36685806

RESUMO

Diabetes mellitus, an epidemic with a rapidly increasing number of patients, always leads to delayed wound healing associated with consistent pro-inflammatory M1 polarization, decreased angiogenesis and increased reactive oxygen species (ROS) in the microenvironment. Herein, a poly (lactic-co-glycolic acid) (PLGA)-based microneedle patch loaded with magnesium hydride (MgH2) (MN-MgH2) is manufactured for defeating diabetic wounds. The application of microneedle patch contributes to the transdermal delivery and the prolonged release of MgH2 that can generate hydrogen (H2) and magnesium ions (Mg2+) after reaction with body fluids. The released H2 reduces the production of ROS, transforming the pathological microenvironment induced by diabetes mellitus. Meanwhile, the released Mg2+ promotes the polarization of pro-healing M2 macrophages. Consequently, cell proliferation and migration are improved, and angiogenesis and tissue regeneration are enhanced. Such intelligent microneedle patch provides a novel way for accelerating wound healing through steadily preserving and releasing of H2 and Mg2+ locally and sustainably.

6.
Adv Mater ; 34(18): e2200062, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35243699

RESUMO

Companion diagnostics (CDx) provides critical information for precision medicine. However, current CDx is mostly limited to in vitro tests, which cannot accurately evaluate the disease progression and treatment response in real time. To overcome this challenge, herein a glucose oxidase (GOx)-engineered conjugated polymer (polyaniline, PANI) nanoplatform (denoted as PANITG) is reported for activatable imaging-based CDx and multistage augmented photothermal/starvation synergistic therapy. PANITG comprises a pH-activatable conjugated polymer as a photothermal convertor and photoacoustic (PA) emitter, a GOx as a cancer starvation inducer as well as a H2 O2 and acid producer, and a H2 O2 -cleavable linker as a "switch" for GOx activity. The in vivo PA imaging and photothermal therapy abilities are activated by acidic tumor microenvironment and self-augmented by the reaction between GOx and glucose. Meanwhile, the photothermal effect will enhance the GOx activity in turn. Such multistage augmentation of the therapeutic effects will facilitate effective cancer management. In addition, the in vivo PA imaging with PANITG reveals the tumor pH level which is correlated to the efficiency of the photothermal therapy and to the catalytic activity of GOx at each stage, enabling real-time activatable CDx.


Assuntos
Nanopartículas , Neoplasias , Linhagem Celular Tumoral , Glucose Oxidase/uso terapêutico , Humanos , Nanopartículas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Terapia Fototérmica , Polímeros/uso terapêutico , Microambiente Tumoral
7.
ACS Nano ; 15(11): 17842-17853, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34761898

RESUMO

Diabetic wound healing is one of the major challenges in the biomedical fields. The conventional single drug treatments have unsatisfactory efficacy, and the drug delivery effectiveness is restricted by the penetration depth. Herein, we develop a magnesium organic framework-based microneedle patch (denoted as MN-MOF-GO-Ag) that can realize transdermal delivery and combination therapy for diabetic wound healing. Multifunctional magnesium organic frameworks (Mg-MOFs) are mixed with poly(γ-glutamic acid) (γ-PGA) hydrogel and loaded into the tips of MN-MOF-GO-Ag, which slowly releases Mg2+ and gallic acid in the deep layer of the dermis. The released Mg2+ induces cell migration and endothelial tubulogenesis, while gallic acid, a reactive oxygen species-scavenger, promotes antioxidation. Besides, the backing layer of MN-MOF-GO-Ag is made of γ-PGA hydrogel and graphene oxide-silver nanocomposites (GO-Ag) which further enables excellent antibacterial effects for accelerating wound healing. The therapeutic effects of MN-MOF-GO-Ag on wound healing are demonstrated with the full-thickness cutaneous wounds of a diabetic mouse model. The significant improvement of wound healing is achieved for mice treated with MN-MOF-GO-Ag.


Assuntos
Diabetes Mellitus , Magnésio , Camundongos , Animais , Cicatrização , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Diabetes Mellitus/tratamento farmacológico , Ácido Gálico
8.
J Nanobiotechnology ; 19(1): 266, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34488789

RESUMO

BACKGROUND: Acute kidney injury (AKI) with high mortality rates is associated with an excess of reactive oxygen/nitrogen species (RONS) within kidney tissues. Recently, nanomedicine antioxidant therapy has been used to alleviate AKI. Herein, we synthesized ultrasmall Prussian blue nanozymes (PB NZs, 4.5 nm) as theranostic agents for magnetic resonance (MR)/photoacoustic (PA) dual-modal imaging guided AKI treatment. RESULTS: PB NZs exhibited multi-enzyme mimetic abilities, promoting the effective elimination of RONS both in vitro and in vivo. Moreover, benefiting from their imaging contrast properties, the rapid renal accumulation of PB NZs was verified by in vivo PA/MR dual-modal imaging. Due to their excellent enrichment in the kidney and unique multi-enzyme mimetic abilities, ultrasmall PB NZs displayed superior AKI treatment efficacy compared with that of amifostine in two clinically relevant types of AKI induced murine models (either by rhabdomyolysis or cisplatin). CONCLUSION: Our findings suggested ultrasmall PB NZs, as nanozyme theranostics, have great potential for AKI management.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Ferrocianetos/farmacologia , Medicina de Precisão/métodos , Injúria Renal Aguda/patologia , Animais , Antioxidantes/farmacologia , Cisplatino/farmacologia , Feminino , Rim/efeitos dos fármacos , Rim/patologia , Camundongos , Camundongos Endogâmicos BALB C , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
9.
Adv Mater ; 33(34): e2008438, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34197008

RESUMO

Enzyme therapeutics have received increasing attention due to their high biological specificity, outstanding catalytic efficiency, and impressive therapeutic outcomes. Protecting and delivering enzymes into target cells while retaining enzyme catalytic efficiency is a big challenge. Wrapping of enzymes with rational designed polymer shells, rather than trapping them into large nanoparticles such as liposomes, have been widely explored because they can protect the folded state of the enzyme and make post-functionalization easier. In this review, the methods for wrapping up enzymes with protective polymer shells are mainly focused on. It is aimed to provide a toolbox for the rational design of polymeric enzymes by introducing methods for the preparation of polymeric enzymes including physical adsorption and chemical conjugation with specific examples of these conjugates/hybrid applications. Finally, a conclusion is drawn and key points are emphasized.


Assuntos
Tecnologia Biomédica/instrumentação , Enzimas/química , Polímeros/química , Adsorção , Animais , Tecnologia Biomédica/métodos , Reagentes de Ligações Cruzadas/química , Citocromos c/química , Desenho de Equipamento , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Cinética , Lipossomos/química , Campos Magnéticos , Nanopartículas/química , Nanoestruturas/química , Oxirredução , Eletricidade Estática , Temperatura
10.
Adv Mater ; 33(13): e2008540, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33645863

RESUMO

Nanotheranostic agents of gold nanomaterials in the second near-infrared (NIR-II) window have attracted significant attention in cancer management, owing to the reduced background signal and deeper penetration depth in tissues. However, it is still challenging to modulate the localized surface plasmon resonance (LSPR) of gold nanomaterials from the first near-infrared (NIR-I) to NIR-II region. Herein, a plasmonic modulation strategy of gold nanorods (GNRs) through manganese dioxide coating is developed for NIR-II photoacoustic/magnetic resonance (MR) duplex-imaging-guided NIR-II photothermal chemodynamic therapy. GNRs are coated with silica dioxide (SiO2 ) and then covered with magnesium dioxide (MnO2 ) to obtain the final product of GNR@SiO2 @MnO2 (denoted as GSM). The LSPR peak of GNRs could be tuned by adjusting the thickness of the MnO2 layer. Theoretical simulations reveal that this plasmonic modulation is mainly due to the change of refraction index around the GNRs after coating with the MnO2 layer. Additionally, the MnO2 layer is demonstrated to degrade into Mn2+ ions in response to peroxide and acidic protons in the tumor microenvironment, which allows for MR imaging and chemodynamic therapy. This plasmonic modulation strategy can be adapted to other metal nanomaterials and the construction of a new class of NIR-II nanotheranostics.


Assuntos
Ouro/química , Raios Infravermelhos , Compostos de Manganês/química , Nanomedicina/métodos , Nanotubos/química , Óxidos/química , Terapia Fototérmica , Nanomedicina Teranóstica/métodos , Linhagem Celular Tumoral , Humanos
11.
Anal Chem ; 93(6): 3189-3195, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33538589

RESUMO

Photoacoustic (PA) probes absorbing in the second near-infrared (NIR-II: 1000-1700 nm) window hold great promise for deep-tissue diagnosis and treatment. Currently, NIR-II PA probes typically involve complex synthesis and surfactant adjuvant for processing and delivery. Furthermore, these NIR-II PA probes are "always-on," leading to inadequate signal-to-background ratio and low specificity. To address these challenges, this study reports a pH-activatable and aggregation-enhanced NIR-II PA probe. Without using any toxic or exotic oxidants, the selected polymer (PPE) is readily doped by oxygen in an ambient environment and simultaneously red-shifts its absorption profile from visible to NIR-II region. By virtue of the carboxyl groups on the side chains, oxygen-doped PPE is readily water-soluble at a physiological pH but tends to aggregate in an acidic environment. The pH-induced aggregation results in a significant PA enhancement and thus allows specific PA imaging of acidic tumor microenvironment in vivo. Our study provides a facile and surfactant-free strategy for achieving water-soluble and pH-responsive NIR-II PA probes, which could be applied for diagnoses of cancer and other diseases associated with changes in pH. It paves the way for the development of new activatable NIR-II imaging probes and also could facilitate the investigation of biological and pathological processes in deep tissue.


Assuntos
Técnicas Fotoacústicas , Polímeros , Concentração de Íons de Hidrogênio , Imagem Óptica , Oxigênio
12.
Small ; 16(19): e2001215, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32307923

RESUMO

Development of molecular probes holds great promise for early diagnosis of aggressive prostate cancer. Here, 2-[3-(1,3-dicarboxypropyl) ureido] pentanedioic acid (DUPA)-conjugated ligand and bis-isoindigo-based polymer (BTII) are synthesized to formulate semiconducting polymer nanoparticles (BTII-DUPA SPN) as a prostate-specific membrane antigen (PSMA)-targeted probe for prostate cancer imaging in the NIR-II window. Insights into the interaction of the imaging probes with the biological targets from single cell to whole organ are obtained by transient absorption (TA) microscopy and photoacoustic (PA) tomography. At single-cell level, TA microscopy reveals the targeting efficiency, kinetics, and specificity of BTII-DUPA SPN to PSMA-positive prostate cancer. At organ level, PA tomographic imaging of BTII-DUPA SPN in the NIR-II window demonstrates superior imaging depth and contrast. By intravenous administration, BTII-DUPA SPN demonstrates selective accumulation and retention in the PSMA-positive tumor, allowing noninvasive PA detection of PSMA overexpressing prostate tumors in vivo. The distribution of nanoparticles inside the tumor tissue is further analyzed through TA microscopy. These results collectively demonstrate BTII-DUPA SPN as a promising probe for prostate cancer diagnosis by PA tomography.


Assuntos
Nanopartículas , Neoplasias da Próstata , Linhagem Celular Tumoral , Diagnóstico por Imagem , Humanos , Masculino , Polímeros , Neoplasias da Próstata/diagnóstico por imagem
13.
Adv Funct Mater ; 30(49)2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33708032

RESUMO

The electrochromism of a water-soluble naturally oxidized electrochromic polymer, ox-PPE, is harnessed for rapid and facile bacterial detection, discrimination, and susceptibility testing. The ox-PPE solution shows distinct colorimetric and spectroscopic changes within 30 min when mixed with live bacteria. For the underlying mechanism, it is found that ox-PPE responds to the reducing species (e.g. cysteine and glutathione) released by metabolically active bacteria. This reduction reaction is ubiquitous among various bacterial strains, with a noticeable difference that enables discrimination of Gram-negative and Gram-positive bacterial strains. Combining ox-PPE with antibiotics, methicillin-susceptible and -resistant S. aureus can be differentiated within 2.5 h. Proof-of-concept demonstration of ox-PPE for antimicrobial susceptibility testing is carried out by incubating E. coli with various antibiotics. The obtained minimum inhibition concentrations are consistent with the conventional culture-based methods, but with the procedure time significantly shortened to 3 h.

14.
Chemistry ; 24(12): 3052-3057, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29274238

RESUMO

Three types of macroanion-countercation interactions in dilute solution, decided by the strength of electrostatic attraction and the change of hydration shells are reported: minor interaction between macroanions [MO8 Pd12 (SeO3 )8 ]6- (M=Zn2+ or Ni2+ ) and monovalent cations (Na+ , K+ , Rb+ , Cs+ ), leaving their hydration shells intact (solvent-separated ion-pairs); strong binding between macroanions and divalent cations (Sr2+ , Ba2+ ) to form solvent-shared ion-pairs with partial dehydration; very strong electrostatic attraction between macroanions and Y3+ ion with contact ion-pairs formation by severely breaking their original hydration shells and forming new ones. In addition, divalent cations can help the macroanions self-assemble into hollow spherical blackberry structures through counterion-mediated attraction, whereas macroanions with mono- or trivalent cations only stay as discrete ions due to either weak interaction or a small number of bound countercations.

15.
Adv Mater ; 29(41)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28922476

RESUMO

Thienoisoindigo-based semiconducting polymer with a strong near-infrared absorbance is synthesized and its water-dispersed nanoparticles (TSPNs) are investigated as a contrast agent for photoacoustic (PA) imaging in the second near-infrared (NIR-II) window (1000-1350 nm). The TSPNs generate a strong PA signal in the NIR-II optical window, where background signals from endogenous contrast agents, including blood and lipid, are at the local minima. By embedding a TSPN-containing tube in chicken-breast tissue, an imaging depth of more than 5 cm at 1064 nm excitation is achieved with a contrast-agent concentration as low as 40 µg mL-1 . The TSPNs under the skin or in the tumor are clearly visualized at 1100 and 1300 nm, with negligible interference from the tissue background. TSPN as a PA contrast in the NIR-II window opens new opportunities for biomedical imaging of deep tissues with improved contrast.

16.
Chemistry ; 22(33): 11756-62, 2016 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-27404486

RESUMO

A molecular photochromic spiropyran-polyoxometalate-alkyl organic-inorganic hybrid has been synthesized and fully characterized. The reversible switching of the hydrophobic spiropyran fragment to the hydrophilic merocyanine one can be easily achieved under light irradiation at different wavelengths. This switch changes the amphiphilic feature of the hybrid, leading to a light-controlled self-assembly behavior in solution. It has been shown that the hybrid can reversibly self-assemble into vesicles in polar solvents and irreversibly into reverse vesicles in non-polar solvents. The sizes of the vesicles and the reverse vesicles are both tunable by the polarity of the solvent, with the hydrophobic interactions being the main driving force.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA