RESUMO
Chemotherapy is widely used to treat patients with systemic cancer. The efficacy of cancer therapies is frequently undermined by adverse side effects that have a negative impact on the quality of life of cancer survivors. Cancer patients who receive chemotherapy often experience chemotherapy-induced cognitive impairment across a variety of domains including memory, learning, and attention. In the current study, the impact of paclitaxel, a taxane derived chemotherapeutic agent, on episodic memory, prior learning, new learning, and reversal learning were evaluated in rats. Neurogenesis was quantified post-treatment in the dentate gyrus of the same rats using immunostaining for 5-Bromo-2'-deoxyuridine (BrdU) and Ki67. Paclitaxel treatment selectively impaired reversal learning while sparing episodic memory, prior learning, and new learning. Furthermore, paclitaxel-treated rats showed decreases in markers of hippocampal cell proliferation, as measured by markers of cell proliferation assessed using immunostaining for Ki67 and BrdU. This work highlights the importance of using multiple measures of learning and memory to identify the pattern of impaired and spared aspects of chemotherapy-induced cognitive impairment.
Assuntos
Antineoplásicos Fitogênicos/administração & dosagem , Aprendizagem/efeitos dos fármacos , Memória Episódica , Paclitaxel/administração & dosagem , Reversão de Aprendizagem/efeitos dos fármacos , Animais , Proliferação de Células , Giro Denteado/efeitos dos fármacos , Giro Denteado/fisiologia , Masculino , Neurogênese/efeitos dos fármacos , Ratos Sprague-DawleyRESUMO
Vivid episodic memories in people have been characterized as the replay of unique events in sequential order [1-3]. Animal models of episodic memory have successfully documented episodic memory of a single event (e.g., [4-8]). However, a fundamental feature of episodic memory in people is that it involves multiple events, and notably, episodic memory impairments in human diseases are not limited to a single event. Critically, it is not known whether animals remember many unique events using episodic memory. Here, we show that rats remember many unique events and the contexts in which the events occurred using episodic memory. We used an olfactory memory assessment in which new (but not old) odors were rewarded using 32 items. Rats were presented with 16 odors in one context and the same odors in a second context. To attain high accuracy, the rats needed to remember item in context because each odor was rewarded as a new item in each context. The demands on item-in-context memory were varied by assessing memory with 2, 3, 5, or 15 unpredictable transitions between contexts, and item-in-context memory survived a 45 min retention interval challenge. When the memory of item in context was put in conflict with non-episodic familiarity cues, rats relied on item in context using episodic memory. Our findings suggest that rats remember multiple unique events and the contexts in which these events occurred using episodic memory and support the view that rats may be used to model fundamental aspects of human cognition.
Assuntos
Sinais (Psicologia) , Memória Episódica , Rememoração Mental , Animais , Masculino , Odorantes , Ratos , Ratos Sprague-Dawley , Reconhecimento PsicológicoRESUMO
A fundamental feature of memory in humans is the ability to simultaneously work with multiple types of information using independent memory systems. Working memory is conceptualized as two independent memory systems under executive control [1, 2]. Although there is a long history of using the term "working memory" to describe short-term memory in animals, it is not known whether multiple, independent memory systems exist in nonhumans. Here, we used two established short-term memory approaches to test the hypothesis that spatial and olfactory memory operate as independent working memory resources in the rat. In the olfactory memory task, rats chose a novel odor from a gradually incrementing set of old odors [3]. In the spatial memory task, rats searched for a depleting food source at multiple locations [4]. We presented rats with information to hold in memory in one domain (e.g., olfactory) while adding a memory load in the other domain (e.g., spatial). Control conditions equated the retention interval delay without adding a second memory load. In a further experiment, we used proactive interference [5-7] in the spatial domain to compromise spatial memory and evaluated the impact of adding an olfactory memory load. Olfactory and spatial memory are resistant to interference from the addition of a memory load in the other domain. Our data suggest that olfactory and spatial memory draw on independent working memory systems in the rat.