Assuntos
Ácido Glicirrízico , Fotoquimioterapia , Mancha Vinho do Porto , Humanos , Fotoquimioterapia/efeitos adversos , Fotoquimioterapia/métodos , Mancha Vinho do Porto/tratamento farmacológico , Bandagens , Feminino , Fármacos Fotossensibilizantes/efeitos adversos , Fármacos Fotossensibilizantes/administração & dosagem , Pele/efeitos dos fármacos , Pele/patologia , Pele/efeitos da radiação , Ácido Aminolevulínico/efeitos adversos , AdultoRESUMO
Port-wine stains (PWSs) are a congenital capillary malformed disorder and are caused by a number of somatic mutations that disrupt vascular development. However, the underlying genetic mutations in the pathogenesis of PWS have not yet been fully elucidated. To understand PWS genetic variations and investigate novel genetic mutations, we extracted genomic DNA from four sporadic PWS patients and then performed whole-genome sequencing (WGS). Using Sorting Intolerant from Tolerant (SIFT), PolyPhen2, Mutation Assessor, MetaSVM to identify candidate genetic mutations and whole-exome sequencing (WES) to confirm the identified variants. We found a previously reported G protein subunit alpha q (GNAQ) mutation c.548G > A, p.Arg183Gln in one case, whereas no such mutation was found in the other three samples. Moreover, six novel somatic mutations in three genes, including KCNJ12, SLC25A5, POTEE, were found in these four samples. Importantly, WES also verified the KCNJ12 (c.433G > A, p.Gly145Ser) and SLC25A5 (c.413G > A, p.Arg138His) mutations in other five sporadic PWS patients, with the frequency of 60% (3 of 5) and 40% (2 of 5), respectively. Thus, we reveal in this study two novel somatic mutations, KCNJ12 and SLC25A5, in the sporadic PWS patients for the first time. These findings highlight the genetic polymorphism of PWS and provide potential clinical prediction targets for this disease.
RESUMO
Secret sharing (SS) can be used as an important group key management technique for distributed cloud storage and cloud computing. In a traditional threshold SS scheme, a secret is shared among a number of participants and each participant receives one share. In many real-world applications, some participants are involved in multiple SS schemes with group collaboration supports thus have more privileges than the others. To address this issue, we could assign multiple shares to such participants. However, this is not a bandwidth efficient solution. Therefore, a more sophisticated mechanism is required. In this paper, we propose an efficient collaborative secret sharing (CSS) scheme specially tailored for multi-privilege participants in group collaboration. The CSS scheme between two or among more SS schemes is constructed by rearranging multi-privilege participants in each participant set and then formulated into several independent SS schemes with multi-privilege shares that precludes information leakage. Our scheme is based on the Chinese Remainder Theorem with lower recovery complexity and it allows each multi-privilege participant to keep only one share. It can be formally proved that our scheme achieves asymptotically perfect security. The experimental results demonstrate that it is efficient to achieve group collaboration, and it has computational advantages, compared with the existing works in the literature.