Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Water Res ; 266: 122317, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-39260192

RESUMO

The advanced oxidation process is an efficient technology for the degradation and detoxification of refractory organics to ensure water safety. However, most researches focus on improving pollutant degradation but overlook carbon emission and resource utilization. In this study, a flow-through electrochemical integrated system was constructed to simultaneously realize bisphenol A (BPA) oxidation into small non-toxic organics and CO2, and generated CO2 coupled with nitrate-containing wastewater conversion to urea and ammonia on a porous cathode (Zr-Fe/CN). The synergistic effect between anodic BPA oxidation with cathodic CO2 and NO3-reduction improves the electron utilization efficiency and thus increasing the BPA degradation, urea yield rate (UYR) and NH3 yield rate (NYR) by 13.4 % 18.4 % and 8.3 %, respectively. Furthermore, the flow-through operation mode significantly increased the mass transfer efficiency and quickly carried generated CO2 from the anode into the cathode to improve CO2 utilization efficiency. Compared to the parallel plate electrode reactor, the BPA degradation efficiency, UYR and NYR in the flow-through reactor increased from 59.46 % to 84.49 % (the initial concentration of BPA was 40 mg/L), 9.94 mmol h-1g-1 to 19.55 mmol h-1g-1, and 80.31 mmol h-1g-1 to 106.06 mmol h-1g-1 within 60 min, respectively. Moreover, the total carbon conversion efficiency (from BPA to urea) increased from 20.2 % to 42.4 % and the total Faraday efficiency (FE) increased from 78.6 % to 96.3 %. This work provides a multi-win strategy of harmless, resource-based and carbon emission reduction for wastewater treatment.

2.
Oncol Lett ; 28(5): 543, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39310028

RESUMO

[This retracts the article DOI: 10.3892/ol.2018.9711.].

3.
Int J Biol Macromol ; 279(Pt 2): 135303, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39236945

RESUMO

Wound healing is influenced by various factors, including oxidative damage, bacterial infection, and inadequate angiogenesis, which collectively contribute to a protracted healing process. In this work, we designed innovative multifunctional hydrogels based on fibrin integrated with Bletilla striata polysaccharides (BSP) or oxidated Bletilla striata polysaccharides (OBSP) for use as wound dressings. The preliminary structure and bioactivity of BSP and OBSP were investigated. The effect of polysaccharides on the self-assembly process of fibrin hydrogels were also evaluated. BSP and OBSP significantly altered the initial fibrin fibrillogenesis and the ultimate structure of the fibrin network. Relative to pure fibrin hydrogel, the incorporation of BSP and OBSP enhanced water swelling and retention, and decelerated the degradation of hydrogels in PBS. Furthermore, BSP and OBSP augmented the antioxidant, antibacterial, and anti-inflammatory properties of fibrin hydrogels, with OBSP demonstrating superior performance in these aspects. Through the development of a murine wound model, it was observed that the wound healing efficacy of hydrogels incorporating BSP and OBSP surpassed that of the pure fibrin group. Notably, the hydrogel formulated with 25 mg/mL OBSP exhibited the most pronounced therapeutic effect, achieving a healing rate approaching 100 %. Consequently, fibrin-OBSP composite hydrogels demonstrate significant potential as wound dressings.

4.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(10): 1218-1224, 2024 Oct 10.
Artigo em Chinês | MEDLINE | ID: mdl-39344617

RESUMO

OBJETIVE: To explore the clinical and genetic etiology of a Chinese pedigree affected with type 2 Long QT syndrome (LQTS). METHODS: A pedigree with type 2 LQTS presented at Fuwai Central China Cardiovascular Hospital on August 23, 2019 was selected as the study subject. Peripheral blood samples were collected from the proband and her parents. Following extraction of genomic DNA, whole exome sequencing (WES) was carried out for the proband, and candidate variant was screened through functional annotation and protein-protein interaction (PPI) analysis. Sanger sequencing was conducted to verify the pathogenicity of candidate variant. This study was approved by the Fuwai Central China Cardiovascular Hospital (Ethics No. 2019-15). RESULTS: WES revealed that the proband has harbored a missense variant of the KCNH2 gene, namely c.1478A>G (p.Tyr493Cys), which was confirmed by Sanger sequencing to have inherited from her father. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was classified as likely pathogenic (PM2_supporting+PM5+PP3+PP4). CONCLUSION: The KCNH2 gene c.1478A>G (p.Tyr493Cys) variant probably underlay the type 2 LQTS in this pedigree.


Assuntos
Canal de Potássio ERG1 , Síndrome do QT Longo , Linhagem , Humanos , Canal de Potássio ERG1/genética , Síndrome do QT Longo/genética , Feminino , Masculino , Mutação de Sentido Incorreto , Povo Asiático/genética , Adulto , China , Sequenciamento do Exoma , Testes Genéticos , População do Leste Asiático
5.
Adv Sci (Weinh) ; : e2402352, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39159046

RESUMO

H2S gas sensors with facile preparation, low detection limits, and high selectivity are crucial for environmental and human health monitoring. However, it is difficult to maintain a high response of H2S gas sensors under high humidity in practical applications. To face this dilemma, a layer-by-layer growth method is applied to in situ prepare a nanostructured Co(CO3)0.5(OH)·0.11H2O/WO3 coated by a hydrophobic hierarchical ZIF-67 as the H2S sensor. This novel composite exhibits excellent humidity immunity without sacrificing the excellent sensitivity and selectivity of H2S. At a low operating temperature of 90 °C, a remarkable response value of 1052.3 to 100 ppm H2S has been achieved, which is 779 and 9.36 times higher than that of pure WO3 and Co(CO3)0.5(OH)·0.11H2O/WO3, respectively. More importantly, an 82.2% relative response value remains at a high humidity of 75%RH. The sensing mechanisms are investigated using gas chromatography-mass spectrometry (GC-MS), which revealed that the reaction products are H2O and SO2. The high humidity immunity and fast response of the Co(CO3)0.5(OH)·0.11H2O@ZIF-67/WO3 demonstrate the layer-by-layer in situ synthesis method holds the potential application for the development of high-performance WO3-based H2S sensors.

6.
Appl Opt ; 63(12): 3123-3129, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38856456

RESUMO

A highly sensitive optical fiber Fabry-Perot interferometer (FPI) for strain measurement with temperature compensation is proposed. Instead of using another actual reference interferometer, a virtual FPI is constructed to superpose with the sensing FPI to form the Vernier effect. The fundamental and the first-order harmonic Vernier effect are generated to increase the sensitivity by adjusting the parameter of the virtual FPI. In order to separate the strain from the environment temperature, an FBG is cascaded to distinguish the applied temperature. Experimental results demonstrate that, with the help of the fundamental Vernier effect, the sensitivity and temperature of the FPI increases from 1.05 pm/°C to 10.63 pm/°C in the temperature range of 40-120°C, and the sensitivity of strain increases from 2.635 pm/µÎµ to 33.11 pm/µÎµ in the strain range of 0-400 µÎµ. In order to access the tracking points more easily and further enhance the sensitivities, the first-order harmonic Vernier effect is generated by modifying the virtual FPI. Results show that the temperature and strain sensitivities are 21.25 pm/°C and 62.25 pm/µÎµ, respectively. In addition, with the help of the FBG, the strain can be separated from the temperature by solving the cross-sensitivity matrix.

7.
Exp Mol Med ; 56(6): 1426-1438, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38825638

RESUMO

Methyltransferase-like 3 (METTL3) is a crucial element of N6-methyladenosine (m6A) modifications and has been extensively studied for its involvement in diverse biological and pathological processes. In this study, we explored how METTL3 affects the differentiation of stem cells from the apical papilla (SCAPs) into odonto/osteoblastic lineages through gain- and loss-of-function experiments. The m6A modification levels were assessed using m6A dot blot and activity quantification experiments. In addition, we employed Me-RIP microarray experiments to identify specific targets modified by METTL3. Furthermore, we elucidated the molecular mechanism underlying METTL3 function through dual-luciferase reporter gene experiments and rescue experiments. Our findings indicated that METTL3+/- mice exhibited significant root dysplasia and increased bone loss. The m6A level and odonto/osteoblastic differentiation capacity were affected by the overexpression or inhibition of METTL3. This effect was attributed to the acceleration of pre-miR-665 degradation by METTL3-mediated m6A methylation in cooperation with the "reader" protein YTHDF2. Additionally, the targeting of distal-less homeobox 3 (DLX3) by miR-665 and the potential direct regulation of DLX3 expression by METTL3, mediated by the "reader" protein YTHDF1, were demonstrated. Overall, the METTL3/pre-miR-665/DLX3 pathway might provide a new target for SCAP-based tooth root/maxillofacial bone tissue regeneration.


Assuntos
Diferenciação Celular , Proteínas de Homeodomínio , Metiltransferases , MicroRNAs , Células-Tronco , Fatores de Transcrição , Animais , Camundongos , Adenosina/análogos & derivados , Adenosina/metabolismo , Diferenciação Celular/genética , Papila Dentária/citologia , Papila Dentária/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Metilação , Metiltransferases/metabolismo , Metiltransferases/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Células-Tronco/metabolismo , Células-Tronco/citologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
8.
Food Chem ; 453: 139646, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38762948

RESUMO

Lactic acid bacteria (LAB) fermentation has been proven to promote human health. The effect of different LAB fermentation on the quality of Opuntia ficus-indica fruit juice (OFIJ) was investigated. OFIJ was an excellent substrate for fermentation, with colony counts of more than 8 log CFU/mL after fermentation. The fermentation altered the acid and sugar contents. Simultaneously, the total phenolic and anthocyanin contents significantly increased. Antioxidant activity enhanced significantly in Lactiplantibacillus plantarum HNU082-fermented OFIJ, primarily in ABTS+ (increased by 16.81%) and DPPH (increased by 23.62%) free radical scavenging ability. Lacticaseibacillus paracasei HNU502-fermented OFIJ showed the most potent inhibition of xanthine oxidase (IC50 = 31.01 ± 3.88 mg TAC/L). Analysis of volatile and non-volatile compounds indicated that fermentation changed the flavor quality and metabolic profiles and caused the most significant modifications in amino acid metabolism. These findings offer valuable information into processing of OFIJ, making it a great choice for functional foods.


Assuntos
Antioxidantes , Fermentação , Sucos de Frutas e Vegetais , Opuntia , Opuntia/química , Opuntia/metabolismo , Sucos de Frutas e Vegetais/análise , Sucos de Frutas e Vegetais/microbiologia , Antioxidantes/metabolismo , Antioxidantes/química , Antioxidantes/análise , Lactobacillales/metabolismo , Fenóis/metabolismo , Fenóis/química , Fenóis/análise , Frutas/química , Frutas/metabolismo , Frutas/microbiologia , Metaboloma , Paladar
9.
Transl Neurosci ; 15(1): 20220339, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38681523

RESUMO

The ventral bed nucleus of the stria terminalis (vBNST) plays a key role in cocaine addiction, especially relapse. However, the direct effects of cocaine on corticotropin-releasing hormone (CRH) neurons in the vBNST remain unclear. Here, we identify that cocaine exposure can remarkably attenuate the intrinsic excitability of CRH neurons in the vBNST in vitro. Accumulating studies reveal the crucial role of Sigma-1 receptors (Sig-1Rs) in modulating cocaine addiction. However, to the authors' best knowledge no investigations have explored the role of Sig-1Rs in the vBNST, let alone CRH neurons. Given that cocaine acts as a type of Sig-1Rs agonist, and the dramatic role of Sig-1Rs played in intrinsic excitability of neurons as well as cocaine addiction, we employ BD1063 a canonical Sig-1Rs antagonist to block the effects of cocaine, and significantly recover the excitability of CRH neurons. Together, we suggest that cocaine exposure leads to the firing rate depression of CRH neurons in the vBNST via binding to Sig-1Rs.

10.
Poult Sci ; 103(5): 103603, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457990

RESUMO

Quail, as an advantageous avian model organism due to its compact size and short reproductive cycle, holds substantial potential for enhancing our understanding of skeletal muscle development. The quantity of skeletal muscle represents a vital economic trait in poultry production. Unraveling the molecular mechanisms governing quail skeletal muscle development is of paramount importance for optimizing meat and egg yield through selective breeding programs. However, a comprehensive characterization of the regulatory dynamics and molecular control underpinning quail skeletal muscle development remains elusive. In this study, through the application of HE staining on quail leg muscle sections, coupled with preceding fluorescence quantification PCR of markers indicative of skeletal muscle differentiation, we have delineated embryonic day 9 (E9) and embryonic day 14 (E14) as the start and ending points, respectively, of quail skeletal muscle differentiation. Then, we employed whole transcriptome sequencing to investigate the temporal expression profiles of leg muscles in quail embryos at the initiation of differentiation (E9) and upon completion of differentiation (E14). Our analysis revealed the expression patterns of 12,012 genes, 625 lncRNAs, 14,457 circRNAs, and 969 miRNAs in quail skeletal muscle samples. Differential expression analysis between the E14 and E9 groups uncovered 3,479 differentially expressed mRNAs, 124 lncRNAs, 292 circRNAs, and 154 miRNAs. Furthermore, enrichment analysis highlighted the heightened activity of signaling pathways related to skeletal muscle metabolism and intermuscular fat formation, such as the ECM-receptor interaction, focal adhesion, and PPAR signaling pathway during E14 skeletal muscle development. Conversely, the E9 stage exhibited a prevalence of pathways associated with myoblast proliferation, exemplified by cell cycle processes. Additionally, we constructed regulatory networks encompassing lncRNA‒mRNA, miRNA‒mRNA, lncRNA‒miRNA-mRNA, and circRNA-miRNA‒mRNA interactions, thus shedding light on their putative roles within quail skeletal muscle. Collectively, our findings illuminate the gene and non-coding RNA expression characteristics during quail skeletal muscle development, serving as a foundation for future investigations into the regulatory mechanisms governing non-coding RNA and quail skeletal muscle development in poultry production.


Assuntos
Coturnix , Redes Reguladoras de Genes , Desenvolvimento Muscular , Músculo Esquelético , Transdução de Sinais , Transcriptoma , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Coturnix/genética , Coturnix/crescimento & desenvolvimento , Coturnix/embriologia , Coturnix/metabolismo , Codorniz/genética , Codorniz/embriologia , Codorniz/crescimento & desenvolvimento , Perfilação da Expressão Gênica/veterinária
11.
Int J Biol Macromol ; 260(Pt 2): 129613, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246440

RESUMO

The effects of pulsed electric field combined with ultrasound (PEF-US) on the recovery of polyphenols from litchi peels were investigated. In addition, the optimal purification parameters for polyphenol extracts and their biological activities were also explored in this study. Single-factor and orthogonal experiments were used to optimize the extraction conditions of polyphenols. After optimization, the total phenol content (TPC) of the sample extracted by PEF-US was 2.30 times higher than that of the sample extracted by traditional hot-water extraction. The mechanism of PEF-US enhancing polyphenol recovery was also revealed by morphological analysis of the powder surface. LX-7 was the best resin by comparing the purification effect of nine macroporous resins. The optimum conditions for purification of litchi peel polyphenols by LX-7 resin were also optimized through adsorption and desorption experiments. UHPLC-MS and HPLC results revealed that gentisic acid, catechin, procyanidin A2 and procyanidin B1 are four main substances in purified samples. The results of bioactivity experiments showed that the purified polyphenol samples had strong antioxidant and antibacterial activity. Overall, PEF-US is an efficient method for recovering polyphenols from litchi peels. Our study also provides a strategy for the comprehensive utilization of fruit processing waste.


Assuntos
Litchi , Polifenóis , Frutas/química , Extratos Vegetais , Antioxidantes/farmacologia
12.
Hereditas ; 161(1): 7, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297377

RESUMO

Lung adenocarcinoma exhibits high incidence and mortality rates, presenting a significant health concern. Concurrently, the COVID-19 pandemic has emerged as a grave global public health challenge. Existing literature suggests that T cells, pivotal components of cellular immunity, are integral to both antiviral and antitumor responses. Yet, the nuanced alterations and consequent functions of T cells across diverse disease states have not been comprehensively elucidated. We gathered transcriptomic data of peripheral blood mononuclear cells from lung adenocarcinoma patients, COVID-19 patients, and healthy controls. We followed a standardized analytical approach for quality assurance, batch effect adjustments, and preliminary data processing. We discerned distinct T cell subsets and conducted differential gene expression analysis. Potential key genes and pathways were inferred from GO and Pathway enrichment analyses. Additionally, we implemented Mendelian randomization to probe the potential links between pivotal genes and lung adenocarcinoma susceptibility. Our findings underscored a notable reduction in mature CD8 + central memory T cells in both lung adenocarcinoma and COVID-19 cohorts relative to the control group. Notably, the downregulation of specific genes, such as TRGV9, could impede the immunological efficacy of CD8 + T cells. Comprehensive multi-omics assessment highlighted genetic aberrations in genes, including TRGV9, correlating with heightened lung adenocarcinoma risk. Through rigorous single-cell transcriptomic analyses, this investigation meticulously delineated variations in T cell subsets across different pathological states and extrapolated key regulatory genes via an integrated multi-omics approach, establishing a robust groundwork for future functional inquiries. This study furnishes valuable perspectives into the etiology of multifaceted diseases and augments the progression of precision medicine.


Assuntos
Adenocarcinoma de Pulmão , COVID-19 , Neoplasias Pulmonares , Humanos , Leucócitos Mononucleares , Análise da Randomização Mendeliana , Pandemias , COVID-19/genética , Linfócitos T CD8-Positivos , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética
13.
J Electrocardiol ; 83: 21-25, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38241779

RESUMO

BACKGROUND: The left bundle branch block (LBBB) is associated with ventricular septal mid-wall fibrosis (SMF) in patients with dilated cardiomyopathy (DCM). However, whether LBBB is also associated with SMF in patients with preserved left ventricular ejection fraction (LVEF) remains unclear. METHODS: We performed a retrospective study of 210 patients with preserved LVEF (male, n = 116; female, n = 94; mean age, 44 ± 17 years). LBBB was defined as QRS duration ≥140 ms for men or ≥ 130 ms for women, QS or rS in V1-V2, mid-QRS notching or slurring in at least two leads (V1, V2, V5, V6, I, and aVL). SMF determined by late gadolinium-enhancement cardiovascular magnetic resonance was defined as stripe-like or patchy mid-myocardial hyper-enhancement in the interventricular septal segments. RESULTS: SMF was detected in 24.8% (52/210) of these patients. The proportion of patients with SMF with LBBB was higher than the proportion of patients with SMF without LBBB (58.3% vs. 20.4%; P < 0.001). In the forward multivariate logistic analysis, LBBB (OR, 4.399; 95% CI, 1.774-10.904; P = 0.001) and age (OR, 1.028; 95% CI, 1.006-1.051; P = 0.011) were independently associated with SMF. The presence of LBBB showed a sensitivity of 27%%, specificity of 94%, positive predictive value of 58%%, and negative predictive value of 80% for the detection of SMF. CONCLUSION: LBBB was significantly associated with SMF in hospitalized patients with preserved LVEF. Screening with a resting 12­lead ECG may help to identify patients who are at a high risk of the presence of SMF.


Assuntos
Função Ventricular Esquerda , Septo Interventricular , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Volume Sistólico , Bloqueio de Ramo/diagnóstico , Eletrocardiografia , Estudos Retrospectivos , Fibrose
14.
Zhongguo Fei Ai Za Zhi ; 26(12): 889-900, 2024 Jan 02.
Artigo em Chinês | MEDLINE | ID: mdl-38151328

RESUMO

BACKGROUND: In China, lung cancer remains the cancer with the highest incidence and mortality rate. Among early-stage lung adenocarcinomas (LUAD), the micropapillary (MPP) component is prevalent and typically exhibits high aggressiveness, significantly correlating with early metastasis, lymphatic infiltration, and reduced five-year survival rates. Therefore, the study is to explore the similarities and differences between MPP and non-micropapillary (non-MPP) components in malignant pulmonary nodules characterized by GGOs in early-stage LUAD, identify unique mutational features of the MPP component and analyze the relationship between the ZNF469 gene, a member of the zinc-finger protein family, and the prognosis of early-stage LUAD, as well as its correlation with immune infiltration. METHODS: A total of 31 malignant pulmonary nodules of LUAD were collected and dissected into paired MPP and non-MPP components using microdissection. Whole-exome sequencing (WES) was performed on the components of early-stage malignant pulmonary nodules. Mutational signatures analysis was conducted using R packages such as maftools, Nonnegative Matrix Factorization (NMF), and Sigminer to unveil the genomic mutational characteristics unique to MPP components in invasive LUAD compared to other tumor tissues. Furthermore, we explored the expression of the ZNF469 gene in LUAD using The Cancer Genome Atlas (TCGA) database to investigate its potential association with the prognosis. We also investigated gene interaction networks and signaling pathways related to ZNF469 in LUAD using the GeneMANIA database and conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Lastly, we analyzed the correlation between ZNF469 gene expression and levels of immune cell infiltration in LUAD using the TIMER and TISIDB databases. RESULTS: MPP components exhibited a higher number of genomic variations, particularly the 13th COSMIC (Catalogue of Somatic Mutations in Cancer) mutational signature characterized by the activity of the cytidine deaminase APOBEC family, which was unique to MPP components compared to non-MPP components in tumor tissues. This suggests the potential involvement of APOBEC in the progression of MPP components in early-stage LUAD. Additionally, MPP samples with high similarity to APOBEC signature displayed a higher tumor mutational burden (TMB), indicating that these patients may be more likely to benefit from immunotherapy. The expression of ZNF469 was significantly upregulated in LUAD compared to normal tissue, and was associated with poor prognosis in LUAD patients (P<0.05). Gene interaction network analysis and GO/KEGG enrichment analysis revealed that COL6A1, COL1A1, COL1A2, TGFB2, MMP2, COL8A2 and C2CD4C interacted with ZNF469 and were mainly involved in encoding collagen proteins and participating in the constitution of extracellular matrix. ZNF469 expression was positively correlated with immune cell infiltration in LUAD (P<0.05). CONCLUSIONS: The study has unveiled distinctive mutational signatures in the MPP components of early-stage invasive LUAD in the Asian population. Furthermore, we have identified that the elevated expression of mutated ZNF469 impacts the prognosis and immune infiltration in LUAD, suggesting its potential as a diagnostic and prognostic biomarker in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , China , Prognóstico , Fatores de Transcrição
15.
PLoS One ; 18(12): e0296213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38134039

RESUMO

Dabieshan tick virus (DBTV) is a newly identified arbovirus, first detected in Haemaphysalis longicornis collected from Hubei Province in 2015. It has been confirmed that DBTV is widely distributed in Shandong Province, China. However, its entomological and epidemiological features remain to be further explored, particularly the feasibility of transovarial transmission. Our research tries to explain the possibility of transovarial transmission of DBTV from engorged female ticks to their offspring. All engorged female adult ticks were sampled from domestic sheep and allowed to lay eggs and hatch in appropriate laboratory conditions. All engorged ticks, larvae and unhatched eggs were classified into pools for nucleic acid extraction and DBTV RNA detection. According to the results of qRT-PCR, the positive rate of DBTV was 6.25% (8/128) in engorged female ticks, 3.57% (1/28) in eggs and 5% (3/60) in larvae pools, respectively. Phylogenetic analysis indicated that DBTV isolates from larvae were similar to those from maternal ticks with more than 99.5% homology, and DBTV was relatively conservative in evolution. Our findings are the first to provide molecular evidence of potential transovarial transmission of DBTV among H. longicornis. Nonetheless, the transovarial transmission of DBTV in frequency and proportion occurring in nature deserves further investigation.


Assuntos
Ixodidae , Carrapatos , Animais , Ovinos , Feminino , Haemaphysalis longicornis , Filogenia , RNA Viral/genética , China/epidemiologia
16.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003577

RESUMO

Duck meat is pivotal in providing high-quality protein for human nutrition, underscoring the importance of studying duck myogenesis. The regulatory mechanisms governing duck myogenesis involve both coding and non-coding RNAs, yet their specific expression patterns and molecular mechanisms remain elusive. To address this knowledge gap, we performed expression profiling analyses of mRNAs, lncRNAs, circRNAs, and miRNAs involved in duck myogenesis using whole-transcriptome RNA-seq. Our analysis identified 1733 differentially expressed (DE)-mRNAs, 1116 DE-lncRNAs, 54 DE-circRNAs, and 174 DE-miRNAs when comparing myoblasts and myotubes. A GO analysis highlighted the enrichment of DE molecules in the extracellular region, protein binding, and exocyst. A KEGG analysis pinpointed pathways related to ferroptosis, PPAR signaling, nitrogen metabolism, cell cycle, cardiac muscle contraction, glycerolipid metabolism, and actin cytoskeleton. A total of 51 trans-acting lncRNAs, including ENSAPLT00020002101 and ENSAPLT00020012069, were predicted to participate in regulating myoblast proliferation and differentiation. Based on the ceRNAs, we constructed lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA networks involving five miRNAs (miR-129-5p, miR-133a-5p, miR-22-3p, miR-27b-3p, and let-7b-5p) that are relevant to myogenesis. Furthermore, the GO and KEGG analyses of the DE-mRNAs within the ceRNA network underscored the significant enrichment of the glycerolipid metabolism pathway. We identified five different DE-mRNAs, specifically ENSAPLG00020001677, ENSAPLG00020002183, ENSAPLG00020005019, ENSAPLG00020010497, and ENSAPLG00020017682, as potential target genes that are crucial for myogenesis in the context of glycerolipid metabolism. These five mRNAs are integral to ceRNA networks, with miR-107_R-2 and miR-1260 emerging as key regulators. In summary, this study provides a valuable resource elucidating the intricate interplay of mRNA-lncRNA-circRNA-miRNA in duck myogenesis, shedding light on the molecular mechanisms that govern this critical biological process.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Transcriptoma , RNA Circular/genética , Patos/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro/genética , RNA-Seq , Desenvolvimento Muscular/genética
17.
J Nanobiotechnology ; 21(1): 458, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38031158

RESUMO

BACKGROUND: Microglial activation in the spinal trigeminal nucleus (STN) plays a crucial role in the development of trigeminal neuralgia (TN). The involvement of adenosine monophosphate-activated protein kinase (AMPK) and N-methyl-D-aspartate receptor 1 (NMDAR1, NR1) in TN has been established. Initial evidence suggests that stem cells from human exfoliated deciduous teeth (SHED) have a potential therapeutic effect in attenuating TN. In this study, we propose that SHED-derived exosomes (SHED-Exos) may alleviate TN by inhibiting microglial activation. This study sought to assess the curative effect of SHED-Exos administrated through the tail vein on a unilateral infraorbital nerve chronic constriction injury (CCI-ION) model in mice to reveal the role of SHED-Exos in TN and further clarify the potential mechanism. RESULTS: Animals subjected to CCI-ION were administered SHED-Exos extracted by differential ultracentrifugation. SHED-Exos significantly alleviated TN in CCI mice (increasing the mechanical threshold and reducing p-NR1) and suppressed microglial activation (indicated by the levels of TNF-α, IL-1ß and IBA-1, as well as p-AMPK) in vivo and in vitro. Notably, SHED-Exos worked in a concentration dependent manner. Mechanistically, miR-24-3p-upregulated SHED-Exos exerted a more significant effect, while miR-24-3p-inhibited SHED-Exos had a weakened effect. Bioinformatics analysis and luciferase reporter assays were utilized for target gene prediction and verification between miR-24-3p and IL1R1. Moreover, miR-24-3p targeted the IL1R1/p-p38 MAPK pathway in microglia was increased in CCI mice, and participated in microglial activation in the STN. CONCLUSIONS: miR-24-3p-encapsulated SHED-Exos attenuated TN by suppressing microglial activation in the STN of CCI mice. Mechanistically, miR-24-3p blocked p-p38 MAPK signaling by targeting IL1R1. Theoretically, targeted delivery of miR-24-3p may offer a potential strategy for TN.


Assuntos
Exossomos , MicroRNAs , Neuralgia do Trigêmeo , Camundongos , Humanos , Animais , Neuralgia do Trigêmeo/metabolismo , Exossomos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
18.
Front Med (Lausanne) ; 10: 1186200, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575983

RESUMO

Background: Complications, including arrhythmia, following severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection continue to be of concern. Omicron is the mainstream SARS-CoV-2 mutant circulating in mainland China. At present, there are few epidemiological studies concerning the relationship between arrhythmia and Omicron variant infection in mainland China. Objectives: To investigate the risk factors of arrhythmia in patients infected with the SARS-CoV-2 Omicron variant and the factors influencing prognosis. Methods: Data from 192 Omicron infected patients with symptoms of arrhythmia (AH group) and 100 Omicron infected patients without arrhythmia (Control group) were collected. Patients in the AH group were divided into the good and poor prognosis groups, according to the follow-up results 4-6 weeks after infection. The general and clinical data between the AH and Control groups, and between the good and poor prognosis groups were compared. The variables with differences between the groups were included in the multivariate logistic regression analysis, and the quantitative variables were analyzed by receiver operating characteristic curve to obtain their cut-off values. Results: Compared with the control group, the body mass index (BMI), proportion of patients with a history of arrhythmia, proportion of antibiotics taken, heart rate, moderate disease severity, white blood cell (WBC) count, and the aspartate aminotransferase, creatine kinase (CK), CK isoenzyme (CK-MB), myoglobin (Mb), high-sensitive troponin I (hs-cTnI), lymphocyte ratio and high sensitivity C-reactive protein (hs-CRP) levels in the AH group were significantly higher (p < 0.05). In addition, obesity (BMI ≥24 kg/m2), fast heart rate (≥100 times/min), moderate disease severity, and WBC, CK-MB and hs-cTnI levels were independent risk factors of arrhythmia for patients with Omicron infection (p < 0.05), and hs-CRP was a protective factor (p < 0.05). Compared with the good prognosis group, the age, proportion of patients with a history of arrhythmia, heart rate, proportion of moderate disease severity, and hs-CRP, CK, Mb and hs-cTnI levels were significantly higher in the poor prognosis group, while the proportion of vaccination was lower in the poor prognosis group (p < 0.05). Advanced age (≥65 years old), proportion of history of arrhythmia, moderate disease severity, vaccination, and hs-CRP, Mb and cTnI levels were independent factors for poor prognosis of patients with arrhythmia (p < 0.05). Conclusion: The factors that affect arrhythmia and the prognosis of patients infected with Omicron include obesity, high heart rate, severity of the disease, age. history of arrhythmia, WBC, hs-CRP, and myocardial injury indexes, which could be used to evaluate and prevent arrhythmia complications in patients in the future.

19.
Int J Biol Macromol ; 243: 125330, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37307978

RESUMO

Bone defects caused by bone trauma, infection, surgery, or other systemic diseases remain a severe challenge for the medical field. To address this clinical problem, different hydrogels were exploited to promote bone tissue regrowth and regeneration. Keratins are natural fibrous proteins found in wool, hair, horns, nails, and feather. Due to their unique characteristics of outstanding biocompatibility, great biodegradability, and hydrophilic, keratins have been widely applicated in different fields. In our study, the feather keratin-montmorillonite nanocomposite hydrogels that consist of keratin hydrogels serving as the scaffold support to accommodate endogenous stem cells and montmorillonite is synthesized. The introduction of montmorillonite greatly improves the osteogenic effect of the keratin hydrogels via bone morphogenetic protein 2 (BMP-2)/phosphorylated small mothers against decapentaplegic homolog 1/5/8 (p-SMAD 1/5/8)/runt-related transcription factor 2 (RUNX2) expression. Moreover, the incorporation of montmorillonite into hydrogels can improve the mechanical properties and bioactivity of the hydrogels. The morphology of feather keratin-montmorillonite nanocomposite hydrogels was shown by scanning electron microscopy (SEM) to have an interconnected porous structure. The incorporation of montmorillonite into the keratin hydrogels was confirmed by the energy dispersive spectrum (EDS). We prove that the feather keratin-montmorillonite nanocomposite hydrogels enhance the osteogenic differentiation of BMSCs. Furthermore, micro-CT and histological analysis of rat cranial bone defect demonstrated that feather keratin-montmorillonite nanocomposite hydrogels dramatically stimulated bone regeneration in vivo. Collectively, feather keratin-montmorillonite nanocomposite hydrogels can regulate BMP/SMAD signaling pathway to stimulate osteogenic differentiation of endogenous stem cells and promote bone defect healing, indicating their promising candidate in bone tissue engineering.


Assuntos
Bentonita , Osteogênese , Ratos , Animais , Nanogéis , Bentonita/farmacologia , Queratinas/farmacologia , Queratinas/química , Plumas , Regeneração Óssea , Diferenciação Celular , Células-Tronco , Hidrogéis/farmacologia , Hidrogéis/química
20.
Front Mol Biosci ; 10: 1178446, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37388242

RESUMO

Introduction: The nuclear factor kB (NF-κB) pathway emerges as a critical regulator of immune responses and is often dysregulated in human cancers. It consists of a family of transcription factors involved in many biological responses. Activated NF-κB subunits results in the nuclear translocation and activation of transcription, and the NF-κB pathway is known to influence the transcription of many genes. Noncanonical NF-κB and its components have been shown to have effects, usually protumorigenic, in many different cancer types. Besides, NF-κB signaling had diverse and complicated roles in cancer with studies that NF-κB could both contribute to tumor promotion and suppression of oncogenesis relying on the cellular context. RelB, a member of noncanonical NF-κB was abnormally regulated in most cancer types, however the molecular features and clinical signature of RelB expression, as well as its role in cancer immunity in human pan-cancer remains to be elucidated. Methods: We used the open databases to explore RelB expression, clinical features and the association with tumor-infiltration cells in human pan-cancer. In this study, we investigated the aberration expression and prognostic significance of RelB, and the correlation with clinicopathological characters and immune cells infiltration in various cancers. The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases were used to analyze the mRNA expression level in different cancer types. Kaplan-Meier analysis and Cox regression were used to explore the prognostic significance of RelB in human pan-cancer. Then we took advantage of the TCGA database to analyze the relationship between RelB expression and DNA methylation, the infiltration of immune cells, immune checkpoint genes, tumor mutation burden (TMB), microsatellite instability (MSI), mismatch repair (MSS). Results: Higher expression of RelB was significantly detected in human cancer tissues and a high level of RelB expression was significantly linked with a worse outcome in LGG, KIPAN, ACC, UVM, LUAD,THYM, GBM, LIHC and TGCT but associated with a favorable overall survival (OS) in SARC, SKCM and BRCA. According to the Human Protein Altas database, RelB was considered as an independent factor in breast cancer and renal cancer prognosis. GSEA results revealed that RelB was involved in many oncogenesisrelated processes and immunity-related pathways. RelB was significantly correlated with DNA methylation in 13 types of cancer. Meanwhile, RelB expression was associated with TMB in 5 types of cancer and MSI in 8 types of cancer. In the final, we analyzed the relationship between RelB expression and immune-infiltration cells in human pan-cancer, which suggested RelB could be a promising therapeutic target for cancer immunotherapy. Discussion: Our study further provided insights into a deeper understanding of RelB as a prognostic biomarker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA