Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Chem B ; 12(16): 3970-3983, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38563351

RESUMO

Lipoic acid (LA), which has good safety and oral absorption, is obtained from various plant-based food sources and needs to be supplemented through human diet. Moreover, substances with a disulfide structure can enter cells through dynamic covalent disulfide exchange with thiol groups on the cell membrane surface. Based on these factors, we constructed LA-modified nanoparticles (LA NPs). Our results showed that LA NPs can be internalized into intestinal epithelial cells through surface thiols, followed by intracellular transcytosis via the endoplasmic reticulum-Golgi pathway. Further mechanistic studies indicated that disulfide bonds within the structure of LA play a critical role in this transport process. In a type I diabetes rat model, the oral administration of insulin-loaded LA NPs exhibited a more potent hypoglycemic effect, with a pharmacokinetic bioavailability of 5.42 ± 0.53%, representing a 1.6 fold enhancement compared to unmodified PEG NPs. Furthermore, a significant upregulation of surface thiols in inflammatory macrophages was reported. Thus, we turned our direction to investigate the uptake behavior of inflammatory macrophages with increased surface thiols towards LA NPs. Inflammatory macrophages showed a 2.6 fold increased uptake of LA NPs compared to non-inflammatory macrophages. Surprisingly, we also discovered that the antioxidant resveratrol facilitates the uptake of LA NPs in a concentration-dependent manner. This is mainly attributed to an increase in glutathione, which is involved in thiol uptake. Consequently, we employed LA NPs loaded with resveratrol for the treatment of colitis and observed a significant alleviation of colitis symptoms. These results suggest that leveraging the variations of thiol expression levels on cell surfaces under both healthy and diseased states through an oral drug delivery system mediated by the small-molecule nutrient LA can be employed for the treatment of diabetes and certain inflammatory diseases.


Assuntos
Compostos de Sulfidrila , Ácido Tióctico , Ácido Tióctico/química , Animais , Compostos de Sulfidrila/química , Administração Oral , Ratos , Humanos , Nanopartículas/química , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Hipoglicemiantes/química , Hipoglicemiantes/farmacologia , Hipoglicemiantes/administração & dosagem , Sistemas de Liberação de Medicamentos , Masculino , Inflamação/tratamento farmacológico , Camundongos , Propriedades de Superfície , Portadores de Fármacos/química , Insulina/metabolismo , Ratos Sprague-Dawley , Tamanho da Partícula , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Células RAW 264.7
2.
J Control Release ; 370: 152-167, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641020

RESUMO

Ligand-modified nanocarriers can promote oral or inhalative administration of macromolecular drugs across the intestinal or pulmonary mucosa. However, enhancing the unidirectional transport of the nanocarriers through "apical uptake→intracellular transport→basolateral exocytosis" route remains a hot topic and challenge in current research. Forskolin is a naturally occurring diterpenoid compound extracted from the roots of C. forskohlii. In our studies, we found that forskolin could increase the transcellular transport of butyrate-modified nanoparticles by 1.67-fold and 1.20-fold in Caco-2 intestinal epithelial cell models and Calu-3 lung epithelial cell models, respectively. Further mechanistic studies revealed that forskolin, on the one hand, promoted the cellular uptake of butyrate-modified nanoparticles by upregulating the expression of monocarboxylic acid transporter-1 (MCT-1) on the apical membrane. On the other hand, forskolin facilitated the binding of MCT-1 to caveolae, thereby mediating butyrate-modified nanoparticles hijacking caveolae to promote the basolateral exocytosis of butyrate-modified nanoparticles. Studies in normal mice model showed that forskolin could promote the transmucosal absorption of butyrate-modified nanoparticles by >2-fold, regardless of oral or inhalative administration. Using semaglutide as the model drug, both oral and inhalation delivery approaches demonstrated significant hypoglycemic effects in type 2 diabetes mice model, in which inhalative administration was more effective than oral administration. This study optimized the strategies aimed at enhancing the transmucosal absorption of ligand-modified nanocarriers in the intestinal or pulmonary mucosa.


Assuntos
Colforsina , Nanopartículas , Animais , Humanos , Colforsina/administração & dosagem , Administração Oral , Nanopartículas/administração & dosagem , Pulmão/metabolismo , Butiratos/administração & dosagem , Butiratos/farmacocinética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Células CACO-2 , Masculino , Simportadores/metabolismo , Camundongos , Administração por Inalação , Sistemas de Liberação de Medicamentos
3.
Transplantation ; 108(9): e207-e217, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38499504

RESUMO

BACKGROUND: Uterus transplantation (UTx) is an emerging treatment for uterine factor infertility. Determining the maximum tolerable cold ischemia time is crucial for successful UTx. However, the limit for cold ischemia in the uterus is unclear. This study aimed to examine cold ischemia's effects on mouse uteri and identify the maximum cold ischemia duration that uteri can endure. METHODS: We systematically assessed the tolerance of mouse uteri to extended cold ischemia, 24 h, 36 h, and 48 h, using the cervical heterotopic UTx model. Multiple indicators were used to evaluate ischemia-reperfusion injury, including reperfusion duration, macroscopic examination, oxidative stress, inflammation, and histopathology. The function of transplants was evaluated through estrous cycle monitoring and embryo transfer. RESULTS: Mouse uteri subjected to 48 h of cold ischemia exhibited significant delays and insufficiencies in reperfusion, substantial tissue necrosis, and loss of the estrous cycle. Conversely, uteri that underwent cold ischemia within 36 h showed long survival, regular estrous cycles, and fertility. CONCLUSIONS: Our study demonstrated that mouse uteri can endure at least 36 h of cold ischemia, extending the known limits for cold ischemia and providing a pivotal reference for research on the prevention and treatment of cold ischemic injury in UTx.


Assuntos
Isquemia Fria , Traumatismo por Reperfusão , Transplante Heterotópico , Útero , Animais , Feminino , Isquemia Fria/efeitos adversos , Útero/transplante , Útero/irrigação sanguínea , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/patologia , Fatores de Tempo , Camundongos , Ciclo Estral , Infertilidade Feminina/etiologia , Infertilidade Feminina/cirurgia , Estresse Oxidativo , Gravidez , Fertilidade , Transferência Embrionária
4.
Front Genet ; 15: 1305681, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419784

RESUMO

Introduction: Rice (Oryza sativa L.) is one of the most extensive crops in the world. China's Heilongjiang Province is the northernmost rice-growing region in the world. However, rice cultivars suitable for growth in low-latitude regions may not mature normally due to their distinct climate and short frost-free period. It is necessary to precisely determine the frost-free period for each region to make the best use of the rice growth stage so as to ensure the maturity and yield of different rice cultivars in Heilongjiang Province. The time span of the heading stage is a key parameter for evaluating the adaptability of a rice cultivar to a specific rice-growing region. Given the above facts, it is of high importance to study the associated genes and sites controlling days to heading (DH) and plant height (PH) of rice in Heilongjiang Province. Bulked segregant analysis (BSA) combined with high-throughput sequencing can effectively exclude interferences from background genomic differences, making it suitable for analyzing the associated sites of complex agronomic traits in early generations. Methods: In this study, an F3 segregating population was obtained by crossing two main cultivars that are grown under different temperatures and day-light conditions in Heilongjiang. Two pools of extreme phenotypes were built for the DH and PH of the population. For SNP and InDel variants obtained from whole-genome resequencing in the pools, an association analysis was performed using the Euclidean distance (ED) algorithm and the SNP/InDel index algorithm. Results: The intersection of SNP and InDel regions associated with the phenotypes was considered to obtain the final associated sites. After excluding interferences from the cloned genes on chromosomes 2 and 7, a total length of 6.34 Mb on chromosomes 1, 3, and 10 and 3.16 Mb on chromosomes 1 and 10 were left associated with PH and DH, respectively. Then, we performed a gene annotation analysis for candidate genes in the remaining regions using multiple genome annotation databases. Our research provides basic data for subsequent gene mapping and cloning. Discussion: By mining more genetic loci associated with the days to heading and plant height of rice, we may provide abundant genetic resources for refined molecular breeding in Heilongjiang Province.

5.
Front Pharmacol ; 15: 1324140, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38362156

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide and accounts for more than 90% of primary liver cancer. The advent of immune checkpoint inhibitor (ICI)-related therapies combined with angiogenesis inhibition has revolutionized the treatment of HCC in late-stage and unresectable HCC, as ICIs alone were disappointing in treating HCC. In addition to the altered immune microenvironment, abnormal lipid metabolism in the liver has been extensively characterized in various types of HCC. Stains are known for their cholesterol-lowering properties and their long history of treating hypercholesterolemia and reducing cardiovascular disease risk. Apart from ICI and other conventional therapies, statins are frequently used by advanced HCC patients with dyslipidemia, which is often marked by the abnormal accumulation of cholesterol and fatty acids in the liver. Supported by a body of preclinical and clinical studies, statins may unexpectedly enhance the efficacy of ICI therapy in HCC patients through the regulation of inflammatory responses and the immune microenvironment. This review discusses the abnormal changes in lipid metabolism in HCC, summarizes the clinical evidence and benefits of stain use in HCC, and prospects the possible mechanistic actions of statins in transforming the immune microenvironment in HCC when combined with immunotherapies. Consequently, the use of statin therapy may emerge as a novel and valuable adjuvant for immunotherapies in HCC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA