Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cardiovasc Pathol ; 64: 107524, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36649811

RESUMO

BACKGROUND: Histopathological studies have shown inflammation, cardiomyocyte injury, and microvascular thrombosis in the ventricular myocardium of patients with coronavirus disease 2019 (COVID-19). However, although atrial dysfunction is common in COVID-19, little is known about histopathological changes in the atria of the heart. We therefore analyzed inflammation, cardiomyocyte injury, and microvascular thrombogenicity in the atria of deceased patients with COVID-19. METHODS: Atrial tissue was obtained from autopsied COVID-19 (n=16) patients and control patients (n=10) and analyzed using immunohistochemistry. The infiltration of CD45+ leukocytes, CD3+ T lymphocytes, CD68+ macrophages, MPO+ neutrophils, and Tryptase+ mast cells were quantified as well as cardiomyocyte damage and microvascular thrombosis. In addition, Tissue Factor (TF) and Factor XII (FXII) were quantified as markers of microvascular thrombogenicity. RESULTS: The numbers of lymphocytes, macrophages, and neutrophils were significantly increased in the atrial myocardium and epicardial atrial adipose tissue of COVID-19 patients compared with the control group. This was accompanied by dispersed cardiomyocyte injury, the occasional presence of microvascular thrombosis, and an increased presence of TF and FXII in the microvascular endothelium. CONCLUSIONS: Severe COVID-19 induces inflammation, cardiomyocyte injury, and microvascular thrombosis in the atria of the heart.


Assuntos
Fibrilação Atrial , COVID-19 , Trombose , Humanos , COVID-19/complicações , COVID-19/patologia , Inflamação/patologia , Átrios do Coração/patologia , Trombose/etiologia , Trombose/patologia
2.
Int J Cardiol ; 370: 454-462, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36332749

RESUMO

BACKGROUND: Cardiac injury and inflammation are common findings in COVID-19 patients. Autopsy studies have revealed cardiac microvascular endothelial damage and thrombosis in COVID-19 patients, indicative of microvascular dysfunction in which reactive oxygen species (ROS) may play a role. We explored whether the ROS producing proteins NOX2, NOX4 and NOX5 are involved in COVID-19-induced cardio-microvascular endothelial dysfunction. METHODS: Heart tissue were taken from the left (LV) and right (RV) ventricle of COVID-19 patients (n = 15) and the LV of controls (n = 14) at autopsy. The NOX2-, NOX4-, NOX5- and Nitrotyrosine (NT)-positive intramyocardial blood vessels fractions were quantitatively analyzed using immunohistochemistry. RESULTS: The LV NOX2+, NOX5+ and NT+ blood vessels fractions in COVID-19 patients were significantly higher than in controls. The fraction of NOX4+ blood vessels in COVID-19 patients was comparable with controls. In COVID-19 patients, the fractions of NOX2+, NOX5+ and NT+ vessels did not differ significantly between the LV and RV, and correlated positively between LV and RV in case of NOX5 (r = 0.710; p = 0.006). A negative correlation between NOX5 and NOX2 (r = -0.591; p = 0.029) and between NOX5 and disease time (r = -0.576; p = 0.034) was noted in the LV of COVID-19 patients. CONCLUSION: We show the induction of NOX2 and NOX5 in the cardiac microvascular endothelium in COVID-19 patients, which may contribute to the previously observed cardio-microvascular dysfunction in COVID-19 patients. The exact roles of these NOXes in pathogenesis of COVID-19 however remain to be elucidated.


Assuntos
COVID-19 , NADPH Oxidase 2 , NADPH Oxidase 5 , Humanos , COVID-19/metabolismo , Endotélio Vascular/metabolismo , Coração , NADPH Oxidase 5/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NADPH Oxidase 2/metabolismo
4.
Int J Exp Pathol ; 103(4): 149-155, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35363404

RESUMO

Atrial dysfunction is a relatively common complication of acute myocarditis, although its pathophysiology is unclear. There is limited information on myocarditis-associated histological changes in the atria and how they develop in time. The aim of this study therefore was to investigate inflammation, fibrosis and viral genome in the atria in time after mild CVB3-induced viral myocarditis (VM) in mice. C3H mice (n = 68) were infected with 105 PFU of Coxsackievirus B3 (CVB3) and were compared with uninfected mice (n = 10). Atrial tissue was obtained at days 4, 7, 10, 21, 35 or 49 post-infection. Cellular infiltration of CD45+ lymphocytes, MAC3+ macrophages, Ly6G+ neutrophils and mast cells was quantified by (immuno)histochemical staining. The CVB3 RNA was determined by in situ hybridization, and fibrosis was evaluated by elastic van Gieson (EvG) staining. In the atria of VM mice, the numbers of lymphocytes on days 4 and 7 (p < .05) and days 10 (p < .01); macrophages on days 7 (p < .01) and 10 (p < .05); neutrophils on days 4 (p < .05); and mast cells on days 4 and 7 (p < .05) increased significantly compared with control mice and decreased thereafter to basal levels. No cardiomyocyte death was observed, and the CVB3 genome was detected in only one infected mouse on Day 4 post-infection. No significant changes in the amount of atrial fibrosis were found between VM and control mice. A temporary increase in inflammation is induced in the atria in the acute phase of CVB3-induced mild VM, which may facilitate the development of atrial arrhythmia and contractile dysfunction.


Assuntos
Infecções por Coxsackievirus , Miocardite , Animais , Infecções por Coxsackievirus/complicações , Infecções por Coxsackievirus/patologia , Modelos Animais de Doenças , Enterovirus Humano B/genética , Fibrose , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C3H , Miocardite/patologia , Miocárdio/patologia
5.
Int J Cardiol ; 349: 157-165, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34871622

RESUMO

BACKGROUND: Compelling evidence has shown cardiac involvement in COVID-19 patients. However, the overall majority of these studies use data obtained during the first wave of the pandemic, while recently differences have been reported in disease course and mortality between first- and second wave COVID-19 patients. The aim of this study was to analyze and compare cardiac pathology between first- and second wave COVID-19 patients. METHODS: Autopsied hearts from first- (n = 15) and second wave (n = 10) COVID-19 patients and from 18 non-COVID-19 control patients were (immuno)histochemically analyzed. CD45+ leukocyte, CD68+ macrophage and CD3+ T lymphocyte infiltration, cardiomyocyte necrosis and microvascular thrombosis were quantified. In addition, the procoagulant factors Tissue Factor (TF), Factor VII (FVII), Factor XII (FXII), the anticoagulant protein Dipeptidyl Peptidase 4 (DPP4) and the advanced glycation end-product N(ε)-Carboxymethyllysine (CML), as markers of microvascular thrombogenicity and dysfunction, were quantified. RESULTS: Cardiac inflammation was significantly decreased in second wave compared to first wave COVID-19 patients, predominantly related to a decrease in infiltrated lymphocytes and the occurrence of lymphocytic myocarditis. This was accompanied by significant decreases in cardiomyocyte injury and microvascular thrombosis. Moreover, microvascular deposits of FVII and CML were significantly lower in second wave compared to first wave COVID-19 patients. CONCLUSIONS: These results show that in our cohort of fatal COVID-19 cases cardiac inflammation, cardiomyocyte injury and microvascular thrombogenicity were markedly decreased in second wave compared to first wave patients. This may reflect advances in COVID-19 treatment related to an increased use of steroids in the second COVID-19 wave.


Assuntos
Tratamento Farmacológico da COVID-19 , Humanos , Inflamação , Pandemias , SARS-CoV-2
6.
Cardiovasc Pathol ; 54: 107367, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34245872

RESUMO

OBJECTIVE: Viral myocarditis (VM) can induce changes in myocardial electrical conduction and arrhythmia. However, their relationship with myocarditis-associated arrhythmic substrates in the heart such as inflammation and fibrosis is relatively unknown. This we have analyzed in the present study. METHODS: C3H mice were infected with 1×105 plaque-forming units Coxsackievirus B3 (CVB3, n=68) and were compared with uninfected control mice (n=10). Electrocardiograms (ECGs) were recorded in all conscious mice shortly before sacrifice and included heart rate; P-R interval; QRS duration; QTc interval and R-peak amplitude of lead II and aVF. Mice were sacrificed at 4, 7, 10, 21, 35 or 49 days post-infection. Cardiac lesion size, calcification, fibrosis and cellular infiltration of CD45+ lymphocytes, MAC3+ macrophages, Ly6G+ neutrophils and mast cells were quantitatively determined in cross-sections of the ventricles. Putative relations between ECG changes and lesion size and/or cardiac inflammation were then analyzed. RESULTS: Significant transient reductions in QRS duration and R-peak amplitude occurred between 4 and 14 days post-infection and returned to baseline values thereafter. The magnitude of these ECG changes strongly correlated to the extent of lymphocyte (days 7 and 14), macrophage (days 7 and 10) and neutrophil (days 7) infiltration. The ECG changes did not significantly correlate with lesion size and fibrosis. CONCLUSION: VM induces transient changes in myocardial electrical conduction that are strongly related to cellular inflammation of the heart. These data show that even in mild VM, with relatively little cardiac damage, the inflammatory infiltrate can form an important arrhythmogenic substrate.


Assuntos
Infecções por Coxsackievirus , Inflamação , Miocardite , Animais , Infecções por Coxsackievirus/complicações , Modelos Animais de Doenças , Eletrocardiografia , Inflamação/virologia , Camundongos , Camundongos Endogâmicos C3H , Miocardite/fisiopatologia , Miocardite/virologia
7.
Clin Res Cardiol ; 109(10): 1271-1281, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32072262

RESUMO

OBJECTIVE: Inflammation of the atria is an important factor in the pathogenesis of atrial fibrillation (AF). Whether the extent of atrial inflammation relates with clinical risk factors of AF, however, is largely unknown. This we have studied comparing patients with paroxysmal and long-standing persistent/permanent AF. METHODS: Left atrial tissue was obtained from 50 AF patients (paroxysmal = 20, long-standing persistent/permanent = 30) that underwent a left atrial ablation procedure either or not in combination with coronary artery bypass grafting and/or valve surgery. Herein, the numbers of CD45+ and CD3+ inflammatory cells were quantified and correlated with the AF risk factors age, gender, diabetes, and blood CRP levels. RESULTS: The numbers of CD45+ and CD3+ cells were significantly higher in the adipose tissue of the atria compared with the myocardium in all AF patients but did not differ between AF subtypes. The numbers of CD45+ and CD3+ cells did not relate significantly to gender or diabetes in any of the AF subtypes. However, the inflammatory infiltrates as well as CK-MB and CRP blood levels increased significantly with increasing age in long-standing persistent/permanent AF and a moderate positive correlation was found between the extent of atrial inflammation and the CRP blood levels in both AF subtypes. CONCLUSION: The extent of left atrial inflammation in AF patients was not related to the AF risk factors, diabetes and gender, but was associated with increasing age in patients with long-standing persistent/permanent AF. This may be indicative for a role of inflammation in the progression to long-standing persistent/permanent AF with increasing age.


Assuntos
Fibrilação Atrial/fisiopatologia , Átrios do Coração/fisiopatologia , Inflamação/fisiopatologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Fibrilação Atrial/cirurgia , Ablação por Cateter , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA