Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Chim Acta ; 555: 117783, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38272251

RESUMO

IgA nephropathy (IgAN) is an immune-mediated glomerulonephritis, posing a challenge for the long-term management. It is crucial to monitor the disease's activity over the disease course. Crescent lesions have been known as an active lesion associated with immune activity. We aimed to develop the Crescent Calculator to aid clinicians in making timely and well-informed decisions throughout the long-term disease course, such as renal biopsies and immunosuppressive therapy. 1,761 patients with biopsy-proven IgAN were recruited from four medical centers in Zhejiang Province, China. 16.9% presented crescent lesions. UPCR, URBC, eGFR and C4 were independently associated with the crescent lesions. By incorporating these variables, the Crescent Calculator was constructed to estimate the likelihood of crescent lesions. The predictor achieved AUC values of over 0.82 in two independent testing datasets. In addition, to fulfill varied clinical needs, multiple classification modes were established. The Crescent Calculator was developed to estimate the risk of crescent lesions for patients with IgAN, assisting clinicians in making timely, objective, and well-informed decisions regarding the need for renal biopsies and more appropriate use of immunosuppressive therapy in patients with IgAN.


Assuntos
Glomerulonefrite por IGA , Glomerulonefrite , Humanos , Glomerulonefrite por IGA/diagnóstico , Progressão da Doença , Terapia de Imunossupressão , Biópsia , Estudos Retrospectivos , Prognóstico
2.
Ying Yong Sheng Tai Xue Bao ; 32(4): 1498-1508, 2021 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-33899419

RESUMO

Water and nitrogen are two important factors controlling rice growth and development. Suitable water-nitrogen interaction can alter nitrogen forms and oxygen environmental factors via regulating water content in the rhizosphere of paddy soil, promote the construction of root morphology, improve leaf photosynthesis and the allocation equilibrium of the photosynthetic products between the source and sink organs, and consequently increase rice population quality and grain yield. The microbial regulation mechanisms driven by the environmental factors (e.g. water, nitrogen and oxygen) also play an important role in improving nitrogen utilization efficiency in rice-soil system. Here, we reviewed the research progress in water-nitrogen interaction, and briefly discussed the effects of water, nitrogen form, and dissolved oxygen on rice growth, photosynthesis, carbon and nitrogen metabolism, nitrogen conversion and the underlying microbiological mechanism. We proposed several key directions for future researches: 1) to quantitatively investigate the spatial and temporal variations of dissolved oxygen in rhizosphere and their dominant environmental drivers under different water and nitrogen regimes; 2) to evaluate the responses of root-sourced signal to rhizosphere dissolved oxygen in different rice genotypes, and uncover its intrinsic mechanisms involved in rice growth and development; 3) to investigate the effects of key microbial process driven by the rhizosphere oxygen environment on the soil nitrogen conversion and rice nitrogen utilization.


Assuntos
Oryza , Solo , Nitrogênio , Oxigênio , Fotossíntese , Água
3.
Angew Chem Int Ed Engl ; 57(27): 8130-8134, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29750852

RESUMO

Although many assembly strategies have been used to successfully construct well-aligned nanowire (NW) assemblies, the understanding of their assembly kinetics has remained elusive, which restricts the development of NW-based device and circuit fabrication. Now a versatile strategy that combines interfacial assembly and synchrotron-based grazing-incidence small-angle X-ray scattering (GISAXS) is presented to track the assembly evolution of the NWs in real time. During the interface assembly process, the randomly dispersed NWs gradually aggregate to form small ordered NW-blocks and finally are constructed into well-defined NW monolayer driven by the conformation entropy. The NW assembly mechanism can be well revealed by the thermodynamic analysis and large-scale molecular dynamics theoretical evaluation. These findings point to new opportunities for understanding NW assembly kinetics and manipulating NW assembled structures by bottom-up strategy.

4.
Proc Inst Mech Eng H ; 218(6): 451-9, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15648669

RESUMO

In this paper, an auxiliary methodology called the creative mechanism design is introduced into the innovation of gripping devices for prosthetic hands. This methodology is a systematic approach based on modification of existing devices for the generation of all possible topological structures of mechanisms and mechanical devices. An existing gripping device (Teh Lin ATG-5F prosthetic hand) constructed by a planar six-bar linkage with one degree of freedom is dealt with by using this methodology. Through the processes of generalization, number synthesis, specialization and particularization for the existing design, five new mechanisms are created in this study to apply to anthropomorphic prosthetic hands. The results show that the methodology for creative mechanism design is a powerful tool for creating new categories of mechanisms to avoid existing designs that have patent protection and can help designers in the conceptual phase. Also, this methodology is validated as a useful way to improve prosthetic hands for amputees.


Assuntos
Amputados/reabilitação , Membros Artificiais , Desenho Assistido por Computador , Mãos/fisiopatologia , Mãos/cirurgia , Desenho de Prótese/métodos , Robótica/instrumentação , Simulação por Computador , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA