Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5161, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886405

RESUMO

Top emission can enhance luminance, color purity, and panel-manufacturing compatibility for emissive displays. Still, top-emitting quantum-dot light-emitting diodes (QLEDs) suffer from poor stability, low light outcoupling, and non-negligible viewing-angle dependence because, for QLEDs with non-red emission, the electrically optimum device structure is incompatible with single-mode optical microcavity. Here, we demonstrate that by improving the way of determining reflection penetration depths and creating refractive-index-lowering processes, the issues faced by green QLEDs can be overcome. This leads to advanced device performance, including a luminance exceeding 1.6 million nits, a current efficiency of 204.2 cd A-1, and a T95 operational lifetime of 15,600 hours at 1000 nits. Meanwhile, our design does not compromise light outcoupling as it offers an external quantum efficiency of 29.2% without implementing light extraction methods. Lastly, an angular color shift of Δu'v' = 0.0052 from 0° to 60° is achieved by narrowing the emission linewidth of quantum dots.

2.
ACS Nano ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38329720

RESUMO

Inefficient hole injection presents a major challenge in achieving stable and commercially viable solution-processed blue electroluminescent devices. Here, we conduct an in-depth study on quantum-dot light-emitting diodes (QLEDs) to understand how the energy levels of common electrodes and hole-transporting layers (HTL) affect device degradation. Our experimental findings reveal a design rule that may seem nonintuitive: combining an electrode and HTL with matched energy levels is most effective in preventing voltage rise and irreversible luminance decay, even though it causes a significant energy offset between the HTL and emissive quantum dots. Using an iterative electrostatic model, we discover that the positive outcomes, including a T95 lifetime of 109 h (luminance = 1000 nits, CIE-y = 0.087), are due to the enhanced p-type doping in the HTL rather than the assumed reduction in barrier heights. Furthermore, our modified hole injection dynamics theory, which considers distributed density-of-states, shows that the increased HTL/quantum-dot energy offset is not a primary concern because the effective barrier height is significantly lower than conventionally assumed. Following this design rule, we expect device stability to be enhanced considerably.

3.
Nano Lett ; 23(12): 5738-5745, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37294577

RESUMO

The operational stability of the blue quantum dot light-emitting diode (QLED) has been one of the most important obstacles to initialize its industrialization. In this work, we demonstrate a machine learning assisted methodology to illustrate the operational stability of blue QLEDs by analyzing the measurements of over 200 samples (824 QLED devices) including current density-voltage-luminance (J-V-L), impedance spectra (IS), and operational lifetime (T95@1000 cd/m2). The methodology is able to predict the operational lifetime of the QLED with a Pearson correlation coefficient of 0.70 with a convolutional neural network (CNN) model. By applying a classification decision tree analysis of 26 extracted features of J-V-L and IS curves, we illustrate the key features in determining the operational stability. Furthermore, we simulated the device operation using an equivalent circuit model to discuss the device degradation related operational mechanisms.

4.
Nano Lett ; 23(5): 2000-2008, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36826387

RESUMO

Next generation displays based on quantum dot light-emitting diodes (QLEDs) require robust patterning methods for quantum dot layers. However, existing patterning methods mostly yield QLEDs with performance far inferior to the state-of-the-art individual devices. Here, we report a light-triggered, carbocation-enabled ligand stripping (CELS) approach to pattern QLEDs with high efficiency and stability. During CELS, photogenerated carbocations from triphenylmethyl chlorides remove native ligands of quantum dots, thereby producing patterns at microscale precision. Chloride anions passivate surface defects and endow patterned quantum dots with preserved photoluminescent quantum yields. It works for both cadmium-based and heavy-metal-free quantum dots. CELS-patterned QLEDs show remarkable external quantum efficiencies (19.1%, 17.5%, 12.0% for red, green, blue, respectively) and a long operation lifetime (T95 at 1000 nits up to 8700 h). Both are among the highest for patterned QLEDs and approach the records for nonpatterned devices, which makes CELS promising for building high-performance QLED displays and related integrated devices.

5.
Nat Commun ; 14(1): 284, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650161

RESUMO

To industrialize printed full-color displays based on quantum-dot light-emitting diodes, one must explore the degradation mechanism and improve the operational stability of blue electroluminescence. Here, we report that although state-of-the-art blue quantum dots, with monotonically-graded core/shell/shell structures, feature near-unity photoluminescence quantum efficiency and efficient charge injection, the significant surface-bulk coupling at the quantum-dot level, revealed by the abnormal dipolar excited state, magnifies the impact of surface localized charges and limits operational lifetimes. Inspired by this, we propose blue quantum dots with a large core and an intermediate shell featuring nonmonotonically-graded energy levels. This strategy significantly reduces surface-bulk coupling and tunes emission wavelength without compromising charge injection. Using these quantum dots, we fabricate bottom-emitting devices with emission colors varying from near-Rec.2020-standard blue to sky blue. At an initial luminance of 1000 cd m-2, these devices exhibit T95 operational lifetimes ranging from 75 to 227 h, significantly surpassing the existing records.

6.
ACS Nano ; 16(6): 9631-9639, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35671529

RESUMO

ZnO-based electron-transporting layers (ETLs) have been universally used in quantum-dot light-emitting diodes (QLEDs) for high performance. The active surface chemistry of ZnO nanoparticles (NPs), however, leads to QLEDs with positive aging and unacceptably poor shelf stability. SnO2 is a promising candidate for ETLs with less reactivity, but NP agglomeration in nonionic solvents makes the conventional device structure abandoned, resulting in QLEDs with extremely low operational lifetimes. The large barrier for electron injection also limits the electroluminescence efficiency. Here, we report one solution to all the above-mentioned problems. Owing to the strong HO-SnO2 coordination and the steric effect provided by the hydrocarbon groups, tetramethylammonium hydroxide can stabilize SnO2 NPs in alcohol, while its intrinsic dipole induces a favorable electronic-level shift for charge injection. The SnO2-based devices, with the conventional structure, exhibit not only the most efficient electroluminescence among ZnO-free QLEDs but also an operational lifetime (T95) over 3200 h at 1000 cd m-2, which is comparable with that of state-of-the-art ZnO-based devices. More importantly, the superior shelf stability means that the TMAH-SnO2 NPs are promising to enable QLEDs with real stability.

7.
Angew Chem Int Ed Engl ; 61(23): e202202633, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35319804

RESUMO

Surface chemistry mediated direct optical patterning represents an emerging strategy for incorporating colloidal nanocrystals (NCs) in integrated optoelectronic platforms including displays and image sensors. However, the role of photochemistry of crosslinkers and other photoactive species in patterning remains elusive. Here we show the design of nitrene- and carbene-based photocrosslinkers can strongly affect the patterning capabilities and photophysical properties of NCs, especially quantum dots (QDs). Their role beyond physical linkers stems from structure-dictated electronic configuration, energy alignment and associated reaction kinetics and thermodynamics. Patterned QD layers with designed carbene-based crosslinkers fully preserve their photoluminescent and electroluminescent properties. Patterned light emitting diodes (QLEDs) show a maximum external quantum efficiency of ≈12 % and lifetime over 4800 h, among the highest for reported patterned QLEDs. These results would guide the rational design of photoactive species in NC patterning and create new possibilities in the monolithic integration of NCs in high-performance device platforms.

8.
RSC Adv ; 11(23): 14047-14052, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35423927

RESUMO

Blue quantum dot (QD) light emitting diode (QLED) developments are far lagging behind the red and green ones as it becomes difficult to balance charge injection and photo stability than the latter. Here, we introduced a combination of a low band energy shell with better surfactants, which largely meet both abovementioned requirements. Our simulation pinpoints that it is the exposed Se on the QD surface, which causes non-radiative relaxations. By adding tributyl phosphine (TBP), which is a good ligand to Se, we recover photoluminescence quantum yield (PLQY) from less than 8.0% up to above 85.0%. The corresponding external quantum efficiency (EQE) of QLEDs increases from 3.1% to 10.1%. This demonstrates that the low bandgap shell with effective surfactant passivation is a promising strategy to enhance QLED performance.

9.
J Phys Chem Lett ; 11(15): 5863-5870, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32618473

RESUMO

For quantum-dot photodiodes comprising an electron-transporting layer assembled of ZnO nanoparticles, the light emitter/absorber generally exhibits enhanced optoelectronic performance after the device is shelf-aged. To understand the so-called positive aging effect, the optoelectronic properties of ZnO nanoparticles are investigated at the thin film and device level as a function of aging time. It is evidenced that the aging process is driven by a surface-stabilizing mechanism of ZnO nanoparticles, in which the active surface adsorption sites for oxygen are gradually but irreversibly stabilized, i.e.. with surface termination of HO-ZnO, leading to reduced nonradiative recombination and increased built-in potential in the adjacent photoactive layer. This work provides insight into new synthetic routes for minimizing the negative impact caused by the aging process.

10.
Nat Commun ; 11(1): 1646, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32242016

RESUMO

The low efficiency and fast degradation of devices from ink-jet printing process hinders the application of quantum dot light emitting diodes on next generation displays. Passivating the trap states caused by both anion and cation under-coordinated sites on the quantum dot surface with proper ligands for ink-jet printing processing reminds a problem. Here we show, by adapting the idea of dual ionic passivation of quantum dots, ink-jet printed quantum dot light emitting diodes with an external quantum efficiency over 16% and half lifetime of more than 1,721,000 hours were reported for the first time. The liquid phase exchange of ligands fulfills the requirements of ink-jet printing processing for possible mass production. And the performance from ink-jet printed quantum dot light emitting diodes truly opens the gate of quantum dot light emitting diode application for industry.

11.
Phys Chem Chem Phys ; 17(23): 15375-85, 2015 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-26000664

RESUMO

Grain boundaries (GBs) dictate vital properties of nanocrystalline doped ceria. Thus, to understand and predict its properties, knowledge of the interaction between dopant-defect complexes and GBs is crucial. Here, we report atomistic simulations, corroborated with first principles calculations, elucidating the fundamental dopant-defect interactions at model GBs in gadolinium-doped and manganese-doped ceria. Gadolinium and manganese are aliovalent dopants, accommodated in ceria via a dopant-defect complex. While the behavior of isolated dopants and vacancies is expected to depend on the local atomic structure at GBs, the added structural complexity associated with dopant-defect complexes is found to have key implications on GB segregation. Compared to the grain interior, energies of different dopant-defect arrangements vary significantly at the GBs. As opposed to bulk, the stability of oxygen vacancy is found to be sensitive to the dopant arrangement at GBs. Manganese exhibits a stronger propensity for segregation to GBs than gadolinium, revealing that accommodation of dopant-defect clusters depends on the nature of dopants. Segregation strength is found to depend on the GB character, a result qualitatively supported by our experimental observations based on scanning transmission electron microscopy. The present results indicate that segregation energies, availability of favorable sites, and overall stronger binding of dopant-defect complexes would influence ionic conductivity across GBs in nanocrystalline doped ceria. Our comprehensive investigation emphasizes the critical role of dopant-defect interactions at GBs in governing functional properties in fluorite-structured ionic conductors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA