Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Oncogene ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39251847

RESUMO

Lenvatinib is a multiple receptor tyrosine kinases inhibitor (TKI) authorized for first-line treatment of hepatocellular carcinoma (HCC). However, Lenvatinib resistance is common in HCC clinical treatment, highlighting the urgent need to understand mechanisms of resistance. Here, we identified Golgi membrane protein 1 (GOLM1), a type II transmembrane protein originally located in the Golgi apparatus, as a novel regulator of Lenvatinib resistance. We found GOLM1 was overexpressed in Lenvatinib resistant human HCC cell lines, blood and HCC samples. Additionally, GOLM1 overexpression contributes to Lenvatinib resistance and HCC progression in vitro and in vivo. Mechanistically, GOLM1 upregulates CSN5 expression through EGFR-STAT3 pathway. Reversely, CSN5 deubiquitinates and stabilizes GOLM1 protein by inhibiting ubiquitin-proteasome pathway of GOLM1. Furthermore, clinical specimens of HCC showed a positive correlation between the activation of the GOLM1-EGFR-STAT3-CSN5 axis. Finally, GOLM1 knockdown was found to act in synergy with Lenvatinib in subcutaneous and orthotopic mouse model. Overall, these findings identify a mechanism of resistance to Lenvatinib treatment for HCC, highlight an effective predictive biomarker of Lenvatinib response in HCC and show that targeting GOLM1 may improve the clinical benefit of Lenvatinib.

2.
Int J Biol Macromol ; 280(Pt 3): 135877, 2024 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-39317290

RESUMO

Phanerochaete chrysosporium were immobilized in magnetic Fe3O4 nanoparticles and calcium alginate to form MC microspheres. The obtained MC microsphere was characterized by SEM, EDS, XRD, BET, VSM and TGA. The results indicated that MC microsphere was a three-dimensional structure with relatively large specific surface area and good porosity. MC microspheres had excellent magnetic recovery performance and thermal stability. The characteristics and performance of MC microspheres on adsorption of Cu2+ were evaluated based on batch adsorption experiments. The maximum adsorption capacity of Cu2+ by MC microspheres was 35.07 mg g-1 at pH of 5.0, temperature of 35 °C and adsorption time of 8 h. MC microspheres can still effectively adsorb Cu2+ at 400 mg L-1. Integrating simulation results from pseudo-second-order kinetic model, Intra-particle diffusion model and Freundlich model, the process was mainly dominated by chemical adsorption, and it is a multi-molecular layer adsorption. The results of XPS and FTIR showed that complexation, ion replacement, and reduction are important mechanisms for adsorption of Cu2+ on MC microspheres. -OH and C-O/C=O mainly complexes with Cu2+ in the biosorption process. After five adsorption-desorption cycles, the adsorption efficiency can still reach 32.40 %. Therefore, MC microspheres are a potential adsorbent that can achieve effective recovery.

3.
Ageing Res Rev ; 101: 102508, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39303877

RESUMO

BACKGROUND: Mild cognitive impairment (MCI) is a critical time window for implementing prevention strategies to attenuate or delay cognitive decline. Non-invasive brain stimulation (NIBS) techniques are promising non-pharmacological therapies for improving the cognitive function of MCI, but it is unclear which type of NIBS protocol is most effective. This study aimed to compare and rank the beneficial effect of different NIBS methods/protocols on cognitive function and examine the acceptability of NIBS in patients with MCI. METHODS: Electronic search of PubMed, Cochrane Library, EMBASE, China National Knowledge Infrastructure, Wanfang Database, and Chongqing VIP Database up to November 2023. Patients with diagnosis of MCI were included. The primary outcomes were acceptability and pre-post treatment changes in global cognitive function, and the secondary outcomes were specific cognitive domains (language and executive function). All network meta­analysis procedures were performed under the frequentist model. A protocol for this systematic review was registered in PROSPERO (Registration number: CRD42023441448). RESULTS: A network meta-analysis was conducted on 19 eligible RCTs consisting of 599 subjects. Compared with the sham stimulation, Repetitive Transcranial Magnetic Stimulation over the Bilateral dorsolateral prefrontal cortex (rTMS-F3F4) showed the strongest improvement in global cognitive function in MCI patients (SMD =1.52[95 %CIs =0.49-2.56]), followed by rTMS over the left dorsolateral prefrontal cortex (rTMS-F3) (SMD =1.25[95 %CIs =0.57-1.93]); Moreover, rTMS-F3F4 showed more significant efficacy in language function (SMD =0.96[95 %CIs = 0.20-1.72]); No statistically significant differences were found among the other cognitive domains. Compared with the rTMS-F4, rTMS-F3F4 showed a stronger improvement in global cognitive function in MCI patients (SMD =1.80[95 %CIs =0.02-3.59]). Similar results were obtained in subgroup analyses of cognitive function. All the methods were well-tolerated with an acceptable safety profile. CONCLUSION: The present findings provide evidence of the benefits of NIBS, especially TMS stimulating the bilateral dorsolateral prefrontal cortex, for the beneficial effect on cognitive and language function in patients with MCI. However, because few studies were available for inclusion, additional well-designed, large-scale RCTs are warranted to support exploring longer-term dynamic effects.

4.
J Coll Physicians Surg Pak ; 34(9): 1090-1095, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39262011

RESUMO

This study was a meta-analysis of patient data to investigate the therapeutic effects of inclisiran on LDL-C, PCSK9, and TC in patients with atherosclerosis. Authors searched the Cochrane Library, Pubmed, EMBASE, and Web of Science databases for randomised controlled trials. Data of 4,731 subjects from five randomised clinical trials were included in this analysis. Patients treated with the PCSK9 inhibitor inclisiran had significantly lower LDL-C levels than those treated with placebo or a statin (mean difference (MD) -1.477; 95% CI -1.551 to -1.403; p <0.001; I2 = 7.2%). The average level of PCSK9 was also relatively lower ((MD) -2.579; 95% CI -2.694 to -2.464; p <0.001; I2 = 36%). They exhibited significant reductions in total cholesterol protein levels ((MD) -1.477; 95% CI -1.585 to -1.369; p <0.001; I2 = 46.7%). Inclisiran reduced LDL-C and PCSK9 levels as well as TC and Apo B levels significantly in patients with atherosclerotic cardiovascular disease (ASCVD). Key Words: Inclisiran, Low-density lipoprotein cholesterol, Atherosclerosis, Adverse events, Meta-analysis.


Assuntos
Doenças Cardiovasculares , LDL-Colesterol , Inibidores de PCSK9 , Humanos , Doenças Cardiovasculares/prevenção & controle , LDL-Colesterol/sangue , Aterosclerose/prevenção & controle , Pró-Proteína Convertase 9 , Ensaios Clínicos Controlados Aleatórios como Assunto , RNA Interferente Pequeno
5.
Arch Med Res ; 56(1): 103086, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39326160

RESUMO

BACKGROUND AND AIMS: As global demographics shift toward an older population, cognitive impairment is becoming increasingly critical. Transcranial Direct Current Stimulation (tDCS), an innovative brain stimulation technique, has the potential to significantly improve cognitive function. Our main aim is to comprehensively analyze the existing literature, identify key aspects of tDCS research in the rehabilitation of cognitive impairment, and predict future trends in this field. METHODS: We used the Web of Science (WOS) database to search for English articles and reviews relevant to this topic. For visual analysis of the literature, we employed the WOS analysis tool, CiteSpace, along with VOSviewer software to ensure comprehensive analysis. RESULTS: We included 2940 articles published between 1998 and 2023. Over 25 years, annual publications and citations in this field increased steadily, peaking at 379 articles in 2021. Michael A. Nitsche was a major contributor. Most articles came from developed countries, primarily North America and Europe, and journals generally had modest impact factors. Research in this field primarily aims to treat cognitive impairment resulting from pathological aging or neuropsychiatric disorders, with a particular focus on specific brain regions. Recently, researchers have integrated various treatment modalities with tDCS techniques to actively investigate effective strategies to mitigate cognitive impairments associated with pathological aging. CONCLUSION: This study presents the first bibliometric analysis of the literature on tDCS in the rehabilitation of cognitive impairment, highlighting key areas of research and emerging trends. These findings provide critical insights for future tDCS interventions targeting cognitive impairment associated with pathological aging.

6.
Cell Commun Signal ; 22(1): 409, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39169379

RESUMO

BACKGROUND: Melanoma, one of the most lethal forms of skin cancer, has the potential to develop in any area where melanocytes are present. Currently, postoperative recurrence due to the emergence of systemic drug resistance represents a significant challenge in the treatment of melanoma. In this study, terphenyllin (TER), a distinctive inhibitory impact on melanoma cells was identified from the natural p-terphenyl metabolite. This study aimed to elucidate the intrinsic mechanism of this inhibitory effect, which may facilitate the discovery of novel chemotherapeutic agents. METHODS: A transcriptome sequencing and metabolomic analysis of TER-treated A375 cells was conducted to identify potential pathways of action. The key proteins were knocked out and backfilled using CRISPR-Cas9 technology and molecular cloning. Subsequently, the results of cytosolic viability, LDH release, immunofluorescence and flow cytometry were employed to demonstrate the cell death status of the drug-treated cells. RESULTS: The p53 signalling pathway was markedly upregulated following TER treatment, leading to the activation of CASP3 via the intrinsic apoptotic pathway. The activated CASP3 initiated apoptosis, while simultaneously continuing to cleave the GSDME, thereby triggering pyroptosis. The knockout of p53, a key protein situated upstream of this pathway, resulted in a significant rescue of TER-induced cell death, as well as an alleviation of the decrease in cell viability. However, the knockout of key proteins situated downstream of the pathway (CASP3 and GSDME) did not result in a rescue of TER-induced cell death, but rather a transformation of the cells from apoptosis and pyroptosis. CONCLUSIONS: The induction of apoptosis and pyroptosis in A375 cells by TER is mediated via the p53-BAX/FAS-CASP3-GSDME signalling pathway. This lays the foundation for TER as a potential anti-melanoma drug in the future. It should be noted that CASP3 and GSDME in this pathway solely regulate the mode of cell death, rather than determine whether cell death occurs. This distinction may prove valuable in future studies of apoptosis and pyroptosis.


Assuntos
Apoptose , Caspase 3 , Piroptose , Proteína Supressora de Tumor p53 , Regulação para Cima , Humanos , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Piroptose/efeitos dos fármacos , Piroptose/genética , Apoptose/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Caspase 3/metabolismo , Linhagem Celular Tumoral , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Transdução de Sinais/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Gasderminas
7.
Bioact Mater ; 41: 221-238, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39149592

RESUMO

A detrimental feedback loop between hypoxia and oxidative stress consistently drives macrophage polarization toward a pro-inflammatory M1 phenotype, thus persistently aggravating rheumatoid arthritis (RA) progression. Herein, an enzyme-catalyzed nanoplatform with synergistic hypoxia-relieving and reactive oxygen species (ROS)-scavenging properties was developed using bovine serum albumin-bilirubin-platinum nanoparticles (BSA-BR-Pt NPs). Bilirubin was employed to eliminate ROS, while platinum exhibited a synergistic effect in scavenging ROS and simultaneously generated oxygen. In mice RA model, BSA-BR-Pt NPs treatment exhibited superior effects, resulting in significant improvements in joint inflammation, cartilage damage, and bone erosion, compared to methotrexate, the most widely used antirheumatic drug. Mechanistically, RNA-sequencing data and experimental results elucidated that BSA-BR-Pt NPs induced a re-polarization of hypoxic M1 macrophages to M2 macrophages via switching glycolysis to oxidative phosphorylation through the inhibition of HIF-1α pathway. Collectively, this research for the first time elaborated the underlying mechanism of enzyme-catalyzed nanoplatform in orchestrating macrophage polarization, and identified a novel therapeutic strategy for RA and other inflammatory disorders.

8.
PLoS One ; 19(4): e0299054, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574027

RESUMO

Wheat straw returning is widely practiced in agriculture; therefore, it is critical to determine the physicochemical and bacterial indicators in soil for the organic carbon storage, accumulative C mineralization, total nitrogen improvement, and nitrogen mineralization in various soil types after wheat straw returning. This study evaluated the influenced indicators of wheat straw addition on soil organic carbon and nitrogen transformation in diverse soil types. For this purpose, an incubation experiment was conducted to analyze the carbon and nitrogen transformation in soil from eight Chinese provinces treated with the same dry weight of wheat straw. The results indicated that the primary physicochemical and bacterial indicators that predict the carbon and nitrogen transformations in the acidic and alkaline soils were different. Of all the natural physicochemical properties of soil, cation exchange capacity and clay content were significantly correlated with organic carbon, mineralized carbon, total nitrogen, and mineralized nitrogen in the alkaline soil. In the acidic soil, the initial C/N ratio of soil was the most significant indicator of carbon and nitrogen transformation. From the perspective of the carbon- and nitrogen-relating bacterial communities, Proteobacteria were largely responsible for the accumulative C mineralization in both types of soil. Furthermore, Proteobacteria strongly regulated the organic carbon storage in the acidic soil after wheat straw addition, whereas Gemmatimonadetes was the main predicted indicator in the alkaline soil. Additionally, total nitrogen and mineralized nitrogen levels were largely explained by Bifidobacterium and Luteimonas in the alkaline soil and by Nitrospira and Bdellovibrio in the acidic soil. Soil physicochemical and biological properties significantly influence soil carbon and nitrogen transformation, which should be considered crucial indicators to guide the rational regulation of straw return in several areas.


Assuntos
Carbono , Solo , Solo/química , Triticum , Nitrogênio/análise , Agricultura/métodos , Bactérias , Proteobactérias , Fertilizantes
9.
J Colloid Interface Sci ; 664: 74-83, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38460386

RESUMO

Active pharmaceutical ingredients (APIs) crystal preparation is a significant issue for the pharmaceutical development attributed to the effect on anti-inflammatory, anti-bacteria, and anti-viral, etc. While, the massive preparation of API crystal with high polymorphism selectivity is still a pendent challenge. Here, we firstly proposed a criterion according to the molecular aggregation, molecular orientation, and hydrogen bond energy between INA molecules from molecular dynamics (MD) simulations, which predicted the hydrogen bond architecture in crystal under different electric fields, hinting the recognition of crystal polymorphism. Then, an electric field governing confined liquid crystallization was constructed to achieve the INA crystal polymorphism screening relying on the criterion. Further, magnifying confined liquid volume by 5000 times from 1.0 µL to 5.0 mL realized the massive preparation of INA crystal with high polymorphic purity (>98.4%), giving a unique pathway for crystal engineering and pharmaceutical industry on the development of innovative and generic API based drugs.

10.
J Hepatol ; 81(1): 93-107, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38403027

RESUMO

BACKGROUND & AIMS: The effectiveness of immune checkpoint inhibitor (ICI) therapy for hepatocellular carcinoma (HCC) is limited by treatment resistance. However, the mechanisms underlying immunotherapy resistance remain elusive. We aimed to identify the role of CT10 regulator of kinase-like (CRKL) in resistance to anti-PD-1 therapy in HCC. METHODS: Gene expression in HCC specimens from 10 patients receiving anti-PD-1 therapy was identified by RNA-sequencing. A total of 404 HCC samples from tissue microarrays were analyzed by immunohistochemistry. Transgenic mice (Alb-Cre/Trp53fl/fl) received hydrodynamic tail vein injections of a CRKL-overexpressing vector. Mass cytometry by time of flight was used to profile the proportion and status of different immune cell lineages in the mouse tumor tissues. RESULTS: CRKL was identified as a candidate anti-PD-1-resistance gene using a pooled genetic screen. CRKL overexpression nullifies anti-PD-1 treatment efficacy by mobilizing tumor-associated neutrophils (TANs), which block the infiltration and function of CD8+ T cells. PD-L1+ TANs were found to be an essential subset of TANs that were regulated by CRKL expression and display an immunosuppressive phenotype. Mechanistically, CRKL inhibits APC (adenomatous polyposis coli)-mediated proteasomal degradation of ß-catenin by competitively decreasing Axin1 binding, and thus promotes VEGFα and CXCL1 expression. Using human HCC samples, we verified the positive correlations of CRKL/ß-catenin/VEGFα and CXCL1. Targeting CRKL using CRISPR-Cas9 gene editing (CRKL knockout) or its downstream regulators effectively restored the efficacy of anti-PD-1 therapy in an orthotopic mouse model and a patient-derived organotypic tumor spheroid model. CONCLUSIONS: Activation of the CRKL/ß-catenin/VEGFα and CXCL1 axis is a critical obstacle to successful anti-PD-1 therapy. Therefore, CRKL inhibitors combined with anti-PD-1 could be useful for the treatment of HCC. IMPACT AND IMPLICATIONS: Here, we found that CRKL was overexpressed in anti-PD-1-resistant hepatocellular carcinoma (HCC) and that CRKL upregulation promotes anti-PD-1 resistance in HCC. We identified that upregulation of the CRKL/ß-catenin/VEGFα and CXCL1 axis contributes to anti-PD-1 tolerance by promoting infiltration of tumor-associated neutrophils. These findings support the strategy of bevacizumab-based immune checkpoint inhibitor combination therapy, and CRKL inhibitors combined with anti-PD-1 therapy may be developed for the treatment of HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Carcinoma Hepatocelular , Resistencia a Medicamentos Antineoplásicos , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas , Infiltração de Neutrófilos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Humanos , Camundongos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Camundongos Transgênicos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Masculino , Quimiocina CXCL1/metabolismo , Quimiocina CXCL1/genética
11.
BMJ Open ; 13(11): e076196, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37989387

RESUMO

INTRODUCTION: Interventions at the mild cognitive impairment (MCI) stage prevent or delay the progression of cognitive decline. In recent years, several studies have shown that physical exercise combined with transcranial direct current stimulation (tDCS) effectively delays the disease and promotes cognitive recovery in patients with MCI. This study aims to determine whether Tai Chi (TC) combined with tDCS can significantly improve memory in patients with MCI compared with TC or tDCS alone. METHODS AND ANALYSIS: This clinical trial will use a 2×2 factorial design, enrolling 128 community-dwelling MCI patients, randomly categorised into four groups: TC, tDCS, TC combined with tDCS and the health education group. Outcome measures will include the Chinese Wechsler Memory Scale-Revised, Auditory Verbal Learning Test and Rey-Osterrieth Complex Figure Test. All assessments will be conducted at baseline and 3 months after the intervention. All analyses will use intention-to-treat or per-protocol methods. ETHICS AND DISSEMINATION: Ethics approval was obtained from the Ethics Committee of the Affiliated Rehabilitation Hospital of the Fujian University of Traditional Chinese Medicine (2022KY-002-01). The results of the study will be disseminated through peer-reviewed publications and at scientific conferences. TRIAL REGISTRATION NUMBER: ChiCTR2200059316.


Assuntos
Disfunção Cognitiva , Tai Chi Chuan , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Disfunção Cognitiva/terapia , Projetos de Pesquisa , Avaliação de Resultados em Cuidados de Saúde , Cognição , Ensaios Clínicos Controlados Aleatórios como Assunto
12.
Natl Sci Rev ; 10(10): nwad169, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38034397

RESUMO

Isolation of triplet pnictinidenes, which bear two unpaired electrons at the pnictogen centers, has long been a great challenge due to their intrinsic high reactivity. Herein, we report the syntheses and characterizations of two bismuthinidenes MsFluindtBu-Bi (3) and MsFluind*-Bi (4) stabilized by sterically encumbered hydrindacene ligands. They were facilely prepared through reductions of the corresponding dichloride precursors with 2 molar equivalents of potassium graphite. The structural analyses revealed that 3 and 4 contain a one-coordinate bismuth atom supported by a Bi-C single σ bond. As a consequence, the remaining two Bi 6p orbitals are nearly degenerate, and 3 and 4 possess triplet ground states. Experimental characterizations with multinuclear magnetic resonance, magnetometry and near infrared spectroscopy coupled to wavefunction based ab initio calculations concurred to evidence that there exist giant and positive zero field splittings (>4300 cm-1) in their S = 1 ground states. Hence even at room temperature the systems almost exclusively populate the lowest-energy nonmagnetic Ms = 0 level, which renders them seemingly diamagnetic.

13.
J Nanobiotechnology ; 21(1): 452, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012616

RESUMO

BACKGROUND: Spinal cord injury (SCI) remains a significant health concern, with limited available treatment options. This condition poses significant medical, economic, and social challenges. SCI is typically categorized into primary and secondary injuries. Inflammation, oxidative stress, scar formation, and the immune microenvironment impede axon regeneration and subsequent functional restoration. Numerous studies have shown that the destruction of the blood-brain barrier (BBB) and microvessels is a crucial factor in severe secondary injury. Additionally, reactive oxygen species (ROS)-induced lipid peroxidation significantly contributes to endothelial cell death. Pericytes are essential constituents of the BBB that share the basement membrane with endothelial cells and astrocytes. They play a significant role in the establishment and maintenance of BBB. RESULTS: Immunofluorescence staining at different time points revealed a consistent correlation between pericyte coverage and angiogenesis, suggesting that pericytes promote vascular repair via paracrine signaling. Pericytes undergo alterations in cellular morphology and the transcriptome when exposed to hypoxic conditions, potentially promoting angiogenesis. We simulated an early ischemia-hypoxic environment following SCI using glucose and oxygen deprivation and BBB models. Co-culturing pericytes with endothelial cells improved barrier function compared to the control group. However, this enhancement was reduced by the exosome inhibitor, GW4869. In vivo injection of exosomes improved BBB integrity and promoted motor function recovery in mice following SCI. Subsequently, we found that pericyte-derived exosomes exhibited significant miR-210-5p expression based on sequencing analysis. Therefore, we performed a series of gain- and loss-of-function experiments in vitro. CONCLUSION: Our findings suggest that miR-210-5p regulates endothelial barrier function by inhibiting JAK1/STAT3 signaling. This process is achieved by regulating lipid peroxidation levels and improving mitochondrial function, suggesting a potential mechanism for restoration of the blood-spinal cord barrier (BSCB) after SCI.


Assuntos
MicroRNAs , Traumatismos da Medula Espinal , Camundongos , Animais , Pericitos/metabolismo , Células Endoteliais/metabolismo , Peroxidação de Lipídeos , Axônios , Regeneração Nervosa , Traumatismos da Medula Espinal/metabolismo , Transdução de Sinais , MicroRNAs/genética , MicroRNAs/metabolismo
14.
Eur J Med Chem ; 261: 115831, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37813064

RESUMO

There remain great unmet needs to treat coronavirus infections in clinic, and the development of novel antiviral agents is highly demanded. In this work, a phenotypic screening against our in-house compound library identified several cajanine derivatives with moderate antiviral activity against HCoV-OC43. Based on the scaffold of cajanine, a series of quinazoline derivatives were designed employing a scaffold-hopping strategy. After an iterative structural optimization campaign, several quinazoline derivatives with potent antiviral efficacy (EC50: ∼0.1 µM) and high selectivity (SI > 1000) were successfully identified. The preliminary mechanism of action study indicated that such quinazoline derivatives functioned at the early stage of infection. In aggregate, this work delivered a new chemical type of coronavirus inhibitors, which could be employed not only for further development of antiviral drugs but also as important chemical tools to delineate the target of action.


Assuntos
Infecções por Coronavirus , Coronavirus , Humanos , Antivirais/química , Quinazolinas/farmacologia , Quinazolinas/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Relação Estrutura-Atividade
15.
Front Public Health ; 11: 1199246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608981

RESUMO

Background: Mild cognitive impairment (MCI) is a critical stage of dementia. Previous reviews have suggested that physical exercise combined with non-invasive brain stimulation is more beneficial for improving cognitive function. However, no targeted studies have confirmed the effect of Tai Chi combined with transcranial direct current stimulation (tDCS) on the improvement of cognitive function in patients with MCI. Thus, this randomized trial was conducted to assess the effect of Tai Chi combined with tDCS on the cognitive performance of patients with MCI. Methods: From April 2018 to February 2020, a randomized, single-blind clinical trial was conducted, involving 180 participants with MCI who were divided into four intervention groups: Tai Chi combined with tDCS (TCT), Tai Chi combined with sham tDCS (TCS), walking combined with tDCS (WAT), and walking combined with sham tDCS (WAS). All participants were assessed at baseline and 12 weeks for global cognitive function, memory, attention, and executive function. Results: At baseline, there were no significant differences in age, gender, education duration, body mass index, or the Baker Depression Inventory among the four groups (P ≥ 0.05). After 12 weeks of intervention, the TCT group showed greater improvements in MOCA scores, memory quotient scores, and digit-symbol coding task reaction time compared to the TCS, WAS, and WAT groups (P < 0.05). The TCT group also had a shorter Stroop test color reaction time compared to the WAS and WAT groups (P < 0.05), a higher increase in Auditory Verbal Learning Test-immediate recall than the TCS and WAT groups (P < 0.05), a shorter visual reaction time than the TCS group (P < 0.05), and a shorter sustained attention time compared to the WAT group (P < 0.05). Conclusion: Tai Chi combined with tDCS effectively improves global cognitive performance, memory, execution function, and attention in patients with MCI. These findings suggest the potential clinical use of Tai Chi combined with tDCS as a physical exercise combined with a non-invasive brain stimulation intervention to improve cognitive function in older adults with MCI. Clinical trial registration: ChiCTR1800015629.


Assuntos
Disfunção Cognitiva , Tai Chi Chuan , Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Método Simples-Cego , Cognição , Disfunção Cognitiva/terapia
16.
Transl Pediatr ; 12(5): 927-937, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37305710

RESUMO

Background: This study sought to analyze the clinical characteristics, biochemical metabolic indications, treatment results, and genetic spectrum of cerebral creatine deficiency syndrome (CCDS), estimate the prevalence of CCDS in Chinese children and provide a reference to guide clinical practice. Methods: We performed a retrospective cohort study of 3,568 children with developmental delay at Children's Hospital of Fudan University over a 6-year period (January 2017-December 2022). Metabolites in the blood/urine were detected by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and genetic testing was performed by next-generation sequencing (NGS). The patients with suspected CCDS were ultimately diagnosed by magnetic resonance spectroscopy (MRS). The patients were then treated and followed up. All the reported cases of CCDS, their gene mutations, and treatment results in China were summarized. Results: Ultimately, 14 patients were diagnosed with CCDS. The age of onset was between 1-2 years. All the patients had developmental delay, 9 had epilepsy, and 8 had movement or behavioral disorders. A total of 17 genetic variants were identified, including 6 novel variants. c.403G>A, c.491dupG of the guanidinoacetate methyltransferase (GAMT) gene had a relatively high frequency. After treatment, patients with GAMT deficiency showed obvious improvements, and brain creatine (Cr) levels recovered to 50-80% of normal, 1 patient achieved normal neurodevelopment, and 3 patients became epilepsy free; however, 6 male patients with X-linked creatine transporter gene (SLC6A8) variants received Cr for 3-6 months with no effect, and 2 patients received combined therapy with few improvements. Conclusions: The prevalence of CCDS is ~0.39% in Chinese children with developmental delay. A low-protein diet, Cr and, ornithine were useful for patients with GAMT deficiency. Male patients with SLC6A8 deficiency showed only limited improvement on combined therapy.

17.
Hepatobiliary Pancreat Dis Int ; 22(5): 444-451, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37308360

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease globally and imposed a heavy economic burden on society and individuals. To date, the pathological process of NAFLD is not yet fully elucidated. Compelling evidences have demonstrated the pivotal role of gut microbiota in the pathogenesis of NAFLD, and gut dysbiosis has been commonly observed in patients with NAFLD. Gut dysbiosis impairs gut permeability, allowing the translocation of bacterial products such as lipopolysaccharides (LPS), short-chain fatty acids (SCFAs), and ethanol to the liver via portal blood flow. This review aimed to shed light on the underlying mechanisms by which gut microbiota influences the development and progression of NAFLD. In addition, the potential application of gut microbiome as a non-invasive diagnostic tool and a novel therapeutical target was reviewed.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Disbiose/patologia , Fígado/patologia
18.
J Colloid Interface Sci ; 648: 365-375, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37301161

RESUMO

Herein, a facile bionic research platform with fabricated hydrogel composite membrane (HCM) is constructed to uncover the effects of the main components of coffee's metabolites on MSUM crystallization. Tailored and biosafety polyethylene glycol diacrylate/N-isopropyl acrylamide (PEGDA/NIPAM) HCM allows the proper mass transfer of coffee's metabolites and can well simulate the process of coffee's metabolites acting in the joint system. With the validations of this platform, it is shown that chlorogenic acid (CGA) can hinder the MSUM crystals formation from 45 h (control group) to 122 h (2 mM CGA), which is the most likely reason that reduces the risk of gout after long-term coffee consumption. Molecular dynamics simulation further indicates that the high interaction energy (Eint) between CGA and MSUM crystal surface and the high electronegativity of CGA both contribute to the restraint of MSUM crystal formation. In conclusion, the fabricated HCM, as the core functional materials of the research platform, presents the understanding of the interaction between coffee consumption and gout control.


Assuntos
Gota , Ácido Úrico , Humanos , Ácido Úrico/química , Café , Hidrogéis , Cristalização , Gota/metabolismo
19.
Antiviral Res ; 214: 105606, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37076089

RESUMO

The emergence of SARS-CoV-2 variants represents a major threat to public health and requires identification of novel therapeutic agents to address the unmet medical needs. Small molecules impeding viral entry through inhibition of spike protein priming proteases could have potent antiviral effects against SARS-CoV-2 infection. Omicsynin B4, a pseudo-tetrapeptides identified from Streptomyces sp. 1647, has potent antiviral activity against influenza A viruses in our previous study. Here, we found omicsynin B4 exhibited broad-spectrum anti-coronavirus activity against HCoV-229E, HCoV-OC43 and SARS-CoV-2 prototype and its variants in multiple cell lines. Further investigations revealed omicsynin B4 blocked the viral entry and might be related to the inhibition of host proteases. SARS-CoV-2 spike protein mediated pseudovirus assay supported the inhibitory activity on viral entry of omicsynin B4 with a more potent inhibition of Omicron variant, especially when overexpression of human TMPRSS2. Moreover, omicsynin B4 exhibited superior inhibitory activity in the sub-nanomolar range against CTSL, and a sub-micromolar inhibition against TMPRSS2 in biochemical assays. The molecular docking analysis confirmed that omicsynin B4 fits well in the substrate binding sites and forms a covalent bond to Cys25 and Ser441 in CTSL and TMPRSS2, respectively. In conclusion, we found that omicsynin B4 may serve as a natural protease inhibitor for CTSL and TMPRSS2, blocking various coronavirus S protein-driven entry into cells. These results further highlight the potential of omicsynin B4 as an attractive candidate for broad-spectrum antiviral therapy that could rapidly respond to emerging variants of SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Catepsina L/metabolismo , Peptídeo Hidrolases , Simulação de Acoplamento Molecular , Glicoproteína da Espícula de Coronavírus/metabolismo , Internalização do Vírus , Antivirais/farmacologia , Serina Endopeptidases/farmacologia
20.
Eur J Pharm Sci ; 185: 106443, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044198

RESUMO

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAB) is resistant to major antibiotics such as penicillin, cephalosporin, fluoroquinolone and aminoglycoside, and has become a significant nosocomial pathogen. The efficacy of rifampicin and colistin combination against CRAB could be dependent on the administration routes and drug concentrations at the site of infection. OBJECTIVE: The objective is to predict drug disposition in biological tissues. Treatment efficacy is extrapolated by assessing respective pharmacodynamic (PD) indices, as well as parameters associated with the emergence of resistance. METHODS: Physiologically-based pharmacokinetic models of rifampicin and colistin were utilized to predict tissue exposures. Dosing regimens and administration routes for combination therapy were evaluated in terms of in vitro antimicrobial susceptibility of A. baumannii associated with targeted PD indices and resistance parameters. RESULTS: Simulated exposures in blood, heart, lung, skin and brain were consistent with reported penetration rates. The results demonstrated that a combination of colistin and rifampicin using conventional intravenous (i.v.) doses could achieve effective exposures in the blood and skin. However, for lung infections, colistin by inhalation would be required due to low lung penetration from intravenous route. Inhaled colistin alone provided good PD coverage but this practice could encourage the emergence of additional resistance which may be overcome by a combination regimen that includes inhaled rifampicin. CONCLUSION: This in silico extrapolation provides valuable information on dosing regimens and routes of administration against CRAB infections in specific tissues. The PBPK modeling approach could be a non-invasive way to inform therapeutic benefits of combination antimicrobial therapy.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Colistina , Rifampina/farmacologia , Infecções por Acinetobacter/tratamento farmacológico , Antibacterianos , Testes de Sensibilidade Microbiana , Farmacorresistência Bacteriana Múltipla
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA