Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Acta Biomater ; 180: 323-336, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38561075

RESUMO

Peripheral nerve injuries (PNIs) can cause neuropathies and significantly affect the patient's quality of life. Autograft transplantation is the gold standard for conventional treatment; however, its application is limited by nerve unavailability, size mismatch, and local tissue adhesion. Tissue engineering, such as nerve guidance conduits, is an alternative and promising strategy to guide nerve regeneration for peripheral nerve repair; however, only a few conduits could reach the high repair efficiency of autografts. The healing process of PNI is frequently accompanied by not only axonal and myelination regeneration but also angiogenesis, which initializes nerve regeneration through vascular endothelial growth factor A (VEGF-A). In this study, a composite nerve conduit with a poly (lactic-co-glycolic acid) (PLGA) hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with VEGF-A transfected Schwann cells (SCs) as the inner layer was established to evaluate its promising ability for peripheral nerve repair. A rat model of peripheral nerve defect was used to examine the efficiency of PLGA/GelMA-SC (VA) conduits, whereas autograft, PLGA, PLGA/GelMA, and PLGA/GelMA-SC (NC) were used as controls. VEGF-A-transfected SCs can provide a stable source for VEGF-A secretion. Furthermore, encapsulation in GelMA cannot only promote proliferation and tube formation of human umbilical vein endothelial cells but also enhance dorsal root ganglia and neuronal cell extension. Previous animal studies have demonstrated that the regenerative effects of PLGA/GelMA-SC (VA) nerve conduit were similar to those of autografts and much better than those of other conduits. These findings indicate that combination of VEGF-A-overexpressing SCs and PLGA/GelMA conduit-guided peripheral nerve repair provides a promising method that enhances angiogenesis and regeneration during nerve repair. STATEMENT OF SIGNIFICANCE: Nerve guidance conduits shows promise for peripheral nerve repair, while achieving the repair efficiency of autografts remains a challenge. In this study, a composite nerve conduit with a PLGA hollow tube as the outer layer and gelatin methacryloyl (GelMA) encapsulated with vascular endothelial growth factor A (VEGF-A)-transfected Schwann cells (SCs) as the inner layer was established to evaluate its potential ability for peripheral nerve repair. This approach preserves growth factor bioactivity and enhances material properties. GelMA insertion promotes Schwann cell proliferation and morphology extension. Moreover, transfected SCs serve as a stable VEGF-A source and fostering angiogenesis. This study offers a method preserving growth factor efficacy and safeguarding SCs, providing a comprehensive solution for enhanced angiogenesis and nerve regeneration.


Assuntos
Neovascularização Fisiológica , Regeneração Nervosa , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Ratos Sprague-Dawley , Células de Schwann , Fator A de Crescimento do Endotélio Vascular , Células de Schwann/metabolismo , Células de Schwann/citologia , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fator A de Crescimento do Endotélio Vascular/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Neovascularização Fisiológica/efeitos dos fármacos , Ratos , Transfecção , Gelatina/química , Masculino , Alicerces Teciduais/química , Humanos , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/patologia , Angiogênese
2.
J Mater Sci Mater Med ; 34(7): 35, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37477830

RESUMO

Peripheral nerve injury (PNI) is a common and severe clinical disease worldwide, which leads to a poor prognosis because of the complicated treatments and high morbidity. Autologous nerve grafting as the gold standard still cannot meet the needs of clinical nerve transplantation because of its low availability and limited size. The development of artificial nerve conduits was led to a novel direction for PNI treatment, while most of the currently developed artificial nerve conduits was lack biochemical cues to promote nerve regeneration. In this study, we designed a novel composite neural conduit by inserting decellularized the rat sciatic nerve or kidney in a poly (lactic-co-glycolic acid) (PLGA) grooved conduit. The nerve regeneration effect of all samples was analyzed using rat sciatic nerve defect model, where decellularized tissues and grooved PLGA conduit alone were used as controls. The degree of nerve regeneration was evaluated using the motor function, gastrocnemius recovery, and morphological and histological assessments suggested that the combination of a grooved conduit with decellularized tissues significantly promoted nerve regeneration compared with decellularized tissues and PLGA conduit alone. It is worth to note that the grooved conduits containing decellularized nerves have a promotive effect similar to that of autologous nerve grafting, suggesting that it could be an artificial nerve conduit used for clinical practice in the future.


Assuntos
Ácido Láctico , Traumatismos dos Nervos Periféricos , Ratos , Animais , Ácido Láctico/farmacologia , Nervo Isquiático/fisiologia , Regeneração Nervosa , Traumatismos dos Nervos Periféricos/terapia , Traumatismos dos Nervos Periféricos/patologia , Próteses e Implantes
3.
Biofabrication ; 15(3)2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37236173

RESUMO

Prostate cancer (PCa) is one of the most lethal cancers in men worldwide. The tumor microenvironment (TME) plays an important role in PCa development, which consists of tumor cells, fibroblasts, endothelial cells, and extracellular matrix (ECM). Hyaluronic acid (HA) and cancer-associated fibroblasts (CAFs) are the major components in the TME and are correlated with PCa proliferation and metastasis, while the underlying mechanism is still not fully understood due to the lack of biomimetic ECM components and coculture models. In this study, gelatin methacryloyl/chondroitin sulfate-based hydrogels were physically crosslinked with HA to develop a novel bioink for the three-dimensional bioprinting of a coculture model that can be used to investigate the effect of HA on PCa behaviors and the mechanism underlying PCa-fibroblasts interaction. PCa cells demonstrated distinct transcriptional profiles under HA stimulation, where cytokine secretion, angiogenesis, and epithelial to mesenchymal transition were significantly upregulated. Further coculture of PCa with normal fibroblasts activated CAF transformation, which could be induced by the upregulated cytokine secretion of PCa cells. These results suggested HA could not only promote PCa metastasis individually but also induce PCa cells to activate CAF transformation and form HA-CAF coupling effects to further promote PCa drug resistance and metastasis.


Assuntos
Bioimpressão , Neoplasias da Próstata , Masculino , Humanos , Microambiente Tumoral , Transição Epitelial-Mesenquimal , Células Endoteliais/patologia , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Citocinas
4.
ACS Biomater Sci Eng ; 9(5): 2347-2361, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37026628

RESUMO

Melanoma is a highly malignant tumor originating from melanocytes. The 5-year survival rate of primary melanoma is 98%, whereas the survival rate of metastatic melanoma is only 10%, which can be attributed to the insensitivity to existing treatments. Fibroblasts are the primary cells in the dermis that promote melanoma metastasis; however, the molecular mechanism underlying the fibroblast-melanoma interaction is yet to be completely understood. Herein, gelatin methacryloyl (GelMA) was used to construct a co-culture model for melanoma cells (A375) and fibroblasts. GelMA retains the good biological properties of collagen, which has been identified as the primary component of the melanoma tumor microenvironment. Fibroblasts were encapsulated in GelMA, whereas A375 cells were cultured on the GelMA surface, which realistically mimics the macrostructure of melanoma. A375 cells co-cultured with fibroblasts demonstrated a higher cellular proliferation rate, potentials of neoneurogenesis, overexpression of epithelial mesenchymal transition markers, and a faster migration rate compared with A375 cells cultured alone, which could be due to the cancer-associated fibroblast activation and the overexpression of transforming growth factor ß1 and fibroblast growth factor-2 by fibroblasts. Overall, this study revealed the possible mechanisms of fibroblast-melanoma interaction and suggested that this co-culture model could be potentially further developed as a platform for screening chemotherapies in the future.


Assuntos
Biomimética , Melanoma , Humanos , Técnicas de Cocultura , Colágeno/metabolismo , Fibroblastos/metabolismo , Microambiente Tumoral
5.
Regen Ther ; 21: 596-610, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36475027

RESUMO

Alopecia is a common and distressing medical condition that has affected a majority of people worldwide, which leads to great effects on the quality of life and self-esteem. Numerous treatments had been used to cure alopecia, including hair growth stimulants, herbal products, and hair transplantation. However, these treatments have their side effects, such as hypertrichosis, edema, and even cardiovascular adverse effects, which lead to the urgent requirement to explore a new hair-follicle (HF) regeneration approach. Tissue engineering could be the potential way for HF regeneration by simulating the epithelial-mesenchymal interaction and cell-extracellular matrix interactions. This review summarized the potential cells that are used in tissue engineering, commonly used tissue engineering techniques, and most importantly, the biomaterials that have been applied for in vitro three-dimensional cell culture or in vivo co-transplantation in HF regeneration. The literature shows that advances in this field toward functional HF development have progressively increased. Although the clinical application of biomaterial co-transplantation for HF regeneration still faces various challenges, numerous studies have proved that this is a promising direction that could be achieved in the future.

6.
Front Neurol ; 13: 986377, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188412

RESUMO

Peripheral nerve injuries cause an absence or destruction of nerves. Decellularized nerves, acting as a replacement for autografts, have been investigated in the promotion of nerve repair and regeneration, always being incorporated with stem cells or growth factors. However, such a strategy is limited by size availability. The potential application in heterotopic transplantation of other decellularized tissues needs to be further explored. In this study, rat decellularized kidney (dK) was selected to be compared with decellularized peripheral nerve (dN), since dK has aboundant ECM components and growth factors. The PC-12 cells were cultured on dK and dN scaffolds, as shown in the similar behaviors of cell metabolism and viability, but have a more regular arrangement on dN compared to dK, indicating that the natural structure plays an important role in guiding cell extension. However, we found significant upregulation of axon-growth-associated genes and proteins of PC-12 cells in the dK group compared to the dN group by qRT-PCR, immunofluorescence, and western blotting. Furthermore, various neurotrophic factors and growth factors of acellular kidney and nerve were evaluated by ELISA assay. The lower expression of neurotrophic factors but higher expression of growth factors such as VEGF and HGF from dK suggests that axon growth and extension for PC-12 cells may be partially mediated by VEGF and HGF expression from decellularized kidney, which further points to a potential application in nerve repair and regeneration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA