Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171280, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423330

RESUMO

Dyes contaminating the sewages have seriously threatened the living beings and their separation from wastewater in terms of potential resource recovery is of high value. Herein, both of metal node doping and ligand group grafting were taken into account to enhance the adsorption selectivity of Fe-MOFs towards cationic dyes. The positive correlation between copper doping amount and selective coefficient (∂MOMB) for methylene blue (MB) over methyl orange (MO) within a certain range was mainly attributed to the increased surface negative charges via partial replacement of Fe(III) with Cu(II). Moreover, the amount of surface negative charges was further increased after amino functionalization and there was a synergism between Cu(II) and -NH2 in selectivity enhancement. As a result, Fe0.6Cu0.4-BDC-NH2 exhibited a 22.5-times increase in ∂MOMB and other cationic dyes including malachite green (MG) and rhodamine B (Rh. B) could also be selectively separated from binary and quaternary mixed dye systems. Moreover, Fe0.6Cu0.4-BDC-NH2 showed many superiorities like a wide pH range of 4.0-8.0, strong anti-interference ability over various inorganic ions, good recyclability, and stability. The adsorption kinetics and isotherm suggested that the MB adsorption process was a homogeneous single-layer chemisorption. Additionally, the thermodynamics manifested that the overall process was exothermic and spontaneous. According to the FT-IR and XPS spectra analysis, the electrostatic interaction and hydrogen bonding were determined as the main driving forces, and π-π interaction also contributed to the adsorption process.

2.
Chemosphere ; 313: 137509, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36495983

RESUMO

Visible-light-driven heterogeneous photo-Fenton process has emerged as the most promising Fenton-derived technology for wastewater decontamination, owing to its prominent superiorities including the potential utilization of clean energy (solar light), and acceleration of ≡Fe(II)/≡Fe(III) dynamic cycle. As the core constituent, catalysts play a pivotal role in the photocatalytic activation of H2O2 to yield reactive oxidative species (ROS). To date, all types of iron-based heterogeneous photo-Fenton catalysts (Fe-HPFCs) have been extensively reported by the scientific community, and exhibited satisfactory catalytic performance towards pollutants decomposition, sometimes even exceeding the homogeneous counterparts (Fe(II)/H2O2). However, the relevant reviews on Fe-HPFCs, especially from the viewpoint of catalyst-self design are extremely limited. Therefore, this state-of-the-art review focuses on the available Fe-HPFCs in literatures, and gives their classification based on their self-characteristics and modification strategies for the first time. Two classes of representative Fe-HPFCs, conventional inorganic semiconductors of Fe-containing minerals and newly emerging Fe-based metal-organic frameworks (Fe-MOFs) are comprehensively summarized. Moreover, three universal strategies including (i) transition metal (TMs) doping, (ii) construction of heterojunctions with other semiconductors or plasmonic materials, and (iii) combination with supporters were proposed to tackle their inherent defects, viz., inferior light-harvesting capacity, fast recombination of photogenerated carriers, slow mass transfer and low exposure and uneven dispersion of active sites. Lastly, a critical emphasis was also made on the challenges and prospects of Fe-HPFCs in wastewater treatment, providing valuable guidance to researchers for the reasonable construction of high-performance Fe-HPFCs.


Assuntos
Ferro , Águas Residuárias , Ferro/química , Peróxido de Hidrogênio/química , Descontaminação , Catálise , Compostos Ferrosos
3.
J Colloid Interface Sci ; 630(Pt B): 866-877, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356452

RESUMO

The photo-Fenton performance of Fe-based metal organic frameworks (Fe-MOFs) largely depends on the amount and the local electron density of metal coordinately unsaturated sites (M CUSs). However, a majority of Fe active sites are fully bound by organic ligands leading to decreased Fe CUSs. Additionally, the symmetrical electronic distribution of iron-oxo (Fe-O) clusters and the fast electron-hole recombination are unbeneficial for the directional electron transfer and the following electron accumulation on Fe CUSs. Herein, the structure of Fe-O clusters onto the framework of MIL-88B was controllably regulated via change of Ce doping amount, among which Fe0.8Ce0.2-MIL-88B exhibited highest removal efficiency of tetracycline (TC). That was mainly ascribed to the following two points: for one, the induced ligand missing defects ameliorated the pore structures and generated more M CUSs; for another, the lower electronegativity of Ce than Fe and the role of ligand missing defects as electron trap state collectively increased the local electron density at Fe CUSs. As a result, the increased M CUSs provided more active sites for H2O2 coordination and the highly concentrated electrons density at Fe CUSs afforded the substantial electron donation towards robust H2O2 dissociation into ∙OH. Furthermore, the increased mesoporous size favored highly-efficient utilization of ∙OH. This work provides a facile strategy to improve photo-Fenton performance of Fe-MOFs.


Assuntos
Cério , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Ferro/química , Elétrons , Peróxido de Hidrogênio/química , Ácidos de Lewis , Ligantes
4.
Chemosphere ; 308(Pt 1): 136156, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36029866

RESUMO

Difficult storage of hydrogen peroxide (H2O2), low production of reactive oxygen species (ROS), and inefficient Fe(II)/Fe(III) recycling limit the application of the Fenton-like process. Calcium peroxide (CaO2) based iron oxychloride (FeOCl) system was developed for solving these deficiencies, and ciprofloxacin (CIP) was effectively degraded within 20 min treatment. 0.33 mmol/L H2O2 and 2.4 mg/L dissolved oxygen (DO) were produced via CaO2. Quenching experiments and electron paramagnetic resonance results confirmed that hydroxyl radicals (·OH) and superoxide anion (·O2-) worked as the main ROS. Density functional theory (DFT) calculations and experimental results suggested that H atoms of H2O2 adsorbed on FeOCl favored the activation of H2O2 into ·OH and DO into ·O2-, and electrophilic Cl and O coordination in FeOCl contributed to the cycle of Fe(II)/Fe(III). ·OH and·O2- were responsible for CIP degradation, and toxicity assessments demonstrated that the developed system reduced the hazard of treated solution. Clarity of FeOCl/CaO2 system triple roles, including H2O2 and O2 production, activation into ROS, and Fe(II)/Fe(III) recycling, facilitates the efficient utilization of O2 in Fenton-like system.


Assuntos
Peróxido de Hidrogênio , Superóxidos , Ciprofloxacina , Compostos Férricos , Compostos Ferrosos , Oxirredução , Oxigênio , Espécies Reativas de Oxigênio
5.
J Colloid Interface Sci ; 628(Pt A): 910-923, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35963176

RESUMO

In this work, nitrogen-doped carbon dots (NCDs) were introduced in different existent sites of titanate nanotubes (TNTs) by a facile synthesis, and their effects on surface potential, photoelectrochemical properties and simultaneous removal of coexisted Cu2+ and norfloxacin (NOR) performance in water were systematically investigated. Constructed NCDs-TNTs composite displayed superior performance towards the adsorption (ion exchange/coordination) of Cu2+ and adsorption-oxidization of NOR over the two individuals, mainly benefiting from the collaboration of NCDs in different existent states. The existence of TiNH chemical linkage was identified between TNTs and NCDs-OT (NCDs on the outer surface of TNTs), which not only modulates the surface potential to favor the external diffusion of Cu2+ or NOR+ from aqueous solution to the negatively charged NCDs-TNTs, but also facilitates the intraparticle transfer of contaminants to the reactive sites. In addition, the up-conversion light property of NCDs-OT and the interstitial NCDs-IT (NCDs on the inner surface of TNTs) doping in TNTs interact together to enable NCDs-IT-TNTs to fully absorb and utilize all visible light. The photoexcited electrons were further trapped by NCDs-OT to promote the photogenerated carrier separation. Adsorbed Cu2+ could also improve the performance of NCDs-TNTs toward NOR oxidization, mainly owing to the self-synchronous doping of adsorbed Cu2+ broadening light absorption area and acting as mediators for delivering electrons. This work provides unique insights into the structural design of composite materials for such combined contamination remediation in water.


Assuntos
Nanotubos , Poluentes Químicos da Água , Carbono , Humanos , Nanotubos/química , Nitrogênio , Norfloxacino , Titânio/química , Água , Poluentes Químicos da Água/química
6.
Ultrason Sonochem ; 72: 105411, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33321403

RESUMO

In this work, as a new strategy, ultrasound/H2O2/MOF system was firstly applied by environmental-benign Fe-MOFs (MIL-53, MIL-88B and MIL-101) for tetracycline hydrochloride removal. The syntheticFe-MOFs were characterized by XRD, FTIR, SEM, XPS, N2 sorption-desorption isotherms and CO-FTIR. MIL-88B demonstrated the best catalytic performance because of its highest amount of Lewis acid sites. Influencing factors, contrast experiment, and corresponding dynamics were carried out to obtain the best experimental conditions and reaction system. Under optimal conditions ([Tetracyclinehydrochloride] = 10 mg/L, [MIL-88B] = 0.3 g/L, [H2O2] = 44 mM, [ultrasound power] = 60 W, and pH = 5.0), the-first-order kinetic rate constant k was calculated to be 0.226 min-1, higher than the simple combination of the ultrasound system (0.004) and MIL-88B/H2O2 system (0.163), indicating the importance of synergistic effect between ultrasound and Fenton reaction. EPR test and quenching experiment proved that ·OH is mainly responsible for tetracycline hydrochloride removal. The major reaction path is the adsorption and decomposition of H2O2 by coordinative unsaturated iron sites on Fe-MOF, but it is not the only path. The direct decomposition of H2O2 and the cavitation effect caused by ultrasound also contribute to the generation of OH.

7.
J Hazard Mater ; 401: 123261, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-32629344

RESUMO

Iron-nickel bimetallic organic frameworks (FeNiX-BDC, H2BDC: terephthalic acid) were developed as bifunctional materials for adsorption and photo-Fenton degradation of organic dyes with different charge properties. Significantly enhanced adsorption capacity of FeNi1/15-BDC towards methylene blue (MB) and methyl orange (MO) was achieved, 5.3 and 2.6 times higher than that of pristine Fe-BDC, which was attributed to enlarged specific surface area and pore volume and the decreased surface charges induced by Ni doping. The adsorption kinetics demonstrated that chemisorption was dominant and intra-particle diffusion was the rate-controlling step. Two-stage degradation including slow induction stage and rapid oxidation stage fitted with pseudo-zero-order kinetics well. The increased rate constants (2.472 vs. 1.188 min-1 for MB; 0.616 vs. 0.421 min-1 for MO) in the induction stage as well as the superior removal capability by asynchronism relative to synchronism jointly corroborating the improved adsorption performance was favor for subsequent degradation. Notably, this heterogeneous system not only exhibited obvious advantages like wider pH working range (3-9), better stability and reusability of catalysts, but also achieved the dual objectives of in-situ decontamination and adsorbent regeneration. The coupling of adsorption and degradation along with synergism between photocatalysis and Fenton-like process are responsible for the reinforced removal of organic contaminants.

8.
Environ Sci Pollut Res Int ; 27(15): 17446-17457, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31129898

RESUMO

Slow and random transfer of pollutants and photo-induced carriers on photocatalysts causes loss of efficiency in photodegradation of contaminants. Enhancing and directing mass transfer of them are considered as two major methods for improving the photodegradation of pollutants over photocatalysts. Here in this work, we focused on the design of a novel photocatalyst which not only accelerated the transfer rate of Cr(VI) and electrons but also provided specific transfer routes for them. By careful characterizations, it is indicated that 2-((2-(2-aminoethylamino)ethylimino)methyl)phenol (AEMP) was covalently attached onto activated carbon (AC), which enhanced Cr(VI) transfer from bulk solution to AC through electrostatic or coordinative interactions. The external mass transfer coefficient (Kf) of Cr(VI) over TiO2/AC-AEMP was estimated as 1.75 × 10-6 m s-1, which was ~ 12.79 and ~ 5.96 times that of TiO2 and TiO2/AC, respectively. Dense and homogeneous heterojunctions between AC and TiO2 were acquired synchronically by forming Ti-O-C linkages, which increased traveling of electrons from TiO2 to AC. Accordingly, Cr(VI) can capture photo-induced electrons on the surface of AC via concrete routes and then be reduced efficiently. The results showed that the photoreduction rate of Cr(VI) on TiO2/AC-AEMP reached to ~ 92.7%, and the overall photocatalytic activity of this well-designed TiO2/AC-AEMP has been enhanced significantly by 5.5 times compared to TiO2/AC. The enhanced photocatalytic activity of TiO2/AC-AEMP was mainly attributed to an improved synergetic process of mass transfer-induced adsorption-photoreduction by forming specific transfer routes for accelerative motion of Cr(VI) and electrons. This work provides a feasible strategy to improve the photoactivity of photocatalysts for the degradation of pollutants by effective mass transfer. Graphical abstract.


Assuntos
Carvão Vegetal , Elétrons , Adsorção , Catálise , Cromo , Titânio
9.
Nanotechnology ; 30(25): 255704, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30780143

RESUMO

The sulfate radical ([Formula: see text]), almost a most active species, is believed to be the best oxidant in the elimination of aquatic organics in advanced oxidation processes. However, acquiring their steady-state generation with high concentration is still challenging work. In this report, we focused on designing a novel composite, in which uniform and rod-like CoMoO4 was fabricated on gC3N4 through Co-N coordination. In this way, the composite acquired an immobilization of Co (II) in its refraining from leaking, and synchronically, a dense heterojunction between CoMoO4 and gC3N4. Over the heterojunctions, photogenerated electrons gained a prolonged lifetime through their efficient separation from holes. The life-prolonged electrons, together with Co (II) in CoMoO4, effectively activated the persulfate, and a concentration of steady-state [Formula: see text] as high as 1.8 × 10-14 mol · l-1 was obtained. With [Formula: see text] fast and complete mineralization of a humic acid was achieved.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 37(3): 896-901, 2017 Mar.
Artigo em Chinês, Inglês | MEDLINE | ID: mdl-30160412

RESUMO

Based on the advantage of spectroscopy method and the significant effect of ·OH and ·O in advanced oxidation degradation system, the change of relative emission spectra intensities of the ·OH and the ·O in a pulsed discharge plasma (PDP) system bubbled with oxygen were tested by using the spectrum detecting technique in this research. The PDP system with needle-to-net electrode was set up in the paper to remediate the polluted soil. The relative emission spectra intensities of the ·OH and the ·O formed in the PDP system with oxygen (O2) bubbling were detected with the spectrograph to illustrate the critical effect of the ·OH and the ·O on the organic compound degradation in the PDP system. The changes of the relative emission spectra intensities of the ·OH and the ·O under the conditions of without soil addition, with the original soil addition, with the organic compound polluted soil addition and with the organic compound-heavy metal polluted soil addition were firstly investigated in the paper. The effect of peak pulse voltage, electrode gap and O2 flow rate on the relative emission spectra intensities of the ·OH and the ·O were also studied to explain the changing rule of the active species in the PDP system. The obtained results show that the addition of soil are beneficial to the formation of the ·OH and the ·O in PDP system for the soil remediation. The relative emission spectra intensities of the ·OH and the ·O in the PDP system with organic compounds polluted soil addition were lower than those in the PDP system with the original soil addition, which proved the oxidation of the ·OH and the ·O on the organic compounds degradation in the remediation system, and the addition of heavy metal ions were favorable to the degradation of the organic compounds in the PDP system. Furthermore, the increase of the peak pulse voltage as well as theO2 flow rate was in favor of the formation of the ·OH and the ·O, while the relative emission spectra intensities of the ·OH and the ·O were lower under the condition of the higher electrode gap, which demonstrated that the higher electrode gap were not in favor of the active species formation. In the study, based on the description of the pivotal role of ·OH and the ·O in the PDP system for the polluted soil remediation, the influence rule of the main factors during the process of polluted soil remediation in the PDP system on the content of ·OH and the ·O were analyzed. This research will provide some basic experimental evidence for the application of PDP technology on the polluted soil remediation.

11.
Chemosphere ; 159: 221-227, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27295438

RESUMO

The synergistic technique of pulsed discharge plasma (PDP) and activated carbon (AC) was built to investigate the kinetics of acid orange 7 (AO7) degradation under different conditions of AC addition, electrode gap, initial pH value of solution, gas variety and gas flow rate. Emission spectra of OH and O, UV-vis absorption spectra of the AO7 solution and TOC removal were measured to illustrate the synergistic mechanism of the PDP and the AC. The obtained results indicated that the kinetic constant of AO7 degradation increased from 0.00947 min(-1) to 0.01419 min(-1) when 4 g AC was added into the PDP system; AO7 degradation was higher in the case of alkaline solution when oxygen was used as the flow gas in the PDP/AC system, 2 L/min oxygen flow was more favorable for the degradation. Results of the relative emission intensities of OH and O indicated the catalytic effect of the AC on the active species formation as well as the important role of the two radicals for the AO7 degradation. There was no new peaks appeared by the UV-vis analysis of the AO7 solution after 60 min treatment. The highest TOC removal in the PDP/AC system was 30.3%, which was achieved under the condition of 4 L/min air flow rate and 3 initial pH value.


Assuntos
Compostos Azo/metabolismo , Benzenossulfonatos/metabolismo , Carvão Vegetal/química , Corantes/metabolismo , Gases em Plasma/química , Catálise , Eletrodos , Cinética
12.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(12): 4135-40, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30256598

RESUMO

Based on the higher oxidation potential of OH radicals (2.8 V), the synergetic effect of pulsed discharge plasma (PDP) and activated carbon (AC) and the advantages of emission spectroscopic detection, such as easy operation, high accuracy and high sensitivity, the relative emission spectra of the OH radicals generated in the PDP/AC system with oxygen flow were measured by the emission spectroscopic detection technique and the spectral intensity of the OH radicals was used to represent the relative amount of the OH radicals formed in the reaction system. The effect of additive amount of the AC, peak pulse voltage and electrode gap on the relative emission spectrum intensities of OH radicals were investigated to illustrate the crucial factors for the OH radicals formation in the PDP/AC system. In addition, the formation of OH radicals in the two liquid phases of distilled water and acid orange 7 (AO7) solution in the sole PDP system and the PDP/AC system were investigated to testify the synergetic mechanism of PDP/AC and the oxidization of OH radicals on the organic compounds in the reaction system. The obtained results showed that the catalytic effect of the AC increased with the increase of the additive amount of the AC in the PDP system, which led to the increase of the relative emission spectral intensities of the formed OH radicals in the synergistic system; higher peak pulse voltage was in favor of the energy input in the discharge system and then enhanced the formation of OH radicals; increase of the electrode gap led to the decrease of energy efficiency in the reaction system and the decrease of the formed OH radicals in the PDP/AC system; the formation of OH radicals in the PDP/AC system was higher than that in the sole PDP system both in the distilled water and in the AO7 solution; the formation of OH radicals in the distilled water was higher than those in the AO7 solution no matter the reaction system was the sole PDP system or the PDP/AC system. The two results indicated that the AC addition was beneficial to the formation of OH radicals in the PDP system and the OH radicals had an important effect on the organic compounds degradation both in the sole PDP system and in the PDP/AC system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA