Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.918
Filtrar
1.
Am J Cancer Res ; 14(7): 3468-3482, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113875

RESUMO

Altered protein ubiquitination is associated with cancer. The novel tripartite motif (TRIM) family of E3 ubiquitin ligases have been reported to play crucial roles in the development, growth, and metastasis of various tumors. The TRIM family member TRIM27 acts as a potential promoter of tumor development in a wide range of cancers. However, little is known regarding the biological features and clinical relevance of TRIM27 in glioblastoma (GBM). Here, we report findings of elevated TRIM27 expression in GBM tissues and GBM cell lines. Further functional analysis showed that TRIM27 deletion inhibited GBM cell growth both in vitro and in vivo. Furthermore, we found that TRIM27 promoted the growth of GBM cells by enhancing the Warburg effect. Additionally, the inactivation of the LKB1/AMPK/mTOR pathway was critical for the oncogenic effects of TRIM27 in GBM. Mechanistically, TRIM27 could directly bind to LKB1 and promote the ubiquitination and degradation of LKB1, which in turn enhanced the Warburg effect and GBM progression. Collectively, these data suggest that TRIM27 contributes to GNM pathogenesis by inhibiting the LKB1/AMPK/mTOR axis and may be a promising candidate as a potential diagnostic and therapeutic marker for patients with GBM.

2.
Angew Chem Int Ed Engl ; : e202409160, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39113640

RESUMO

Flexible and high-performance aqueous Zn-ion batteries (ZIBs), coupled with low cost and safe, are considered as one of the most promising energy storage candidates for wearable electronics. However, most of hydrogel electrolytes suffer from poor mechanical properties and interfacial chemistry, which limits them to suppressed performance levels in flexible ZIBs, especially under harsh mechanical strains. Herein, a bio-inspired multifunctional hydrogel electrolyte network (polyacrylamide (PAM)/trehalose) with improved mechanical and adhesive properties was developed via a simple trehalose network-repairing strategy to stabilize the interfacial chemistry for highly reversible flexible ZIBs. As a result, the trehalose-modified PAM hydrogel exhibits a superior strength and stretchability up to 100 kPa and 5338%, respectively, as well as strong adhesive properties to various substrates. Also, the PAM/trehalose hydrogel electrolyte provides superior anti-corrosion capability for Zn anode and regulates Zn nucleation/growth, resulting in achieving a high Coulombic efficiency of 98.8%, and long-term stability over 2400 h. Importantly, the flexible Zn//MnO2 pouch cell exhibits excellent cycling performance under different bending conditions, which offers a great potential in flexible energy-related applications and beyond.

3.
World J Gastroenterol ; 30(26): 3229-3246, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39086630

RESUMO

BACKGROUND: Monopolar spindle-binding protein 3B (MOB3B) functions as a signal transducer and altered MOB3B expression is associated with the development of human cancers. AIM: To investigate the role of MOB3B in colorectal cancer (CRC). METHODS: This study collected 102 CRC tissue samples for immunohistochemical detection of MOB3B expression for association with CRC prognosis. After overexpression and knockdown of MOB3B expression were induced in CRC cell lines, changes in cell viability, migration, invasion, and gene expression were assayed. Tumor cell autophagy was detected using transmission electron microscopy, while nude mouse xenograft experiments were performed to confirm the in-vitro results. RESULTS: MOB3B expression was reduced in CRC vs normal tissues and loss of MOB3B expression was associated with poor CRC prognosis. Overexpression of MOB3B protein in vitro attenuated the cell viability as well as the migration and invasion capacities of CRC cells, whereas knockdown of MOB3B expression had the opposite effects in CRC cells. At the molecular level, microtubule-associated protein light chain 3 II/I expression was elevated, whereas the expression of matrix metalloproteinase (MMP)2, MMP9, sequestosome 1, and phosphorylated mechanistic target of rapamycin kinase (mTOR) was downregulated in MOB3B-overexpressing RKO cells. In contrast, the opposite results were observed in tumor cells with MOB3B knockdown. The nude mouse data confirmed these in-vitro findings, i.e., MOB3B expression suppressed CRC cell xenograft growth, whereas knockdown of MOB3B expression promoted the growth of CRC cell xenografts. CONCLUSION: Loss of MOB3B expression promotes CRC development and malignant behaviors, suggesting a potential tumor suppressive role of MOB3B in CRC by inhibition of mTOR/autophagy signaling.


Assuntos
Autofagia , Movimento Celular , Neoplasias Colorretais , Invasividade Neoplásica , Transdução de Sinais , Serina-Treonina Quinases TOR , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos Endogâmicos BALB C , Camundongos Nus , Prognóstico , Serina-Treonina Quinases TOR/metabolismo
4.
Sci Rep ; 14(1): 17679, 2024 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-39085446

RESUMO

Colorectal liver metastasis (CRLM) is challenging in the clinical treatment of colorectal cancer. Limited research has been conducted on how CRLM develops. RNA sequencing data were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Four machine learning algorithms were used to screen the hub CRLM-specific genes, including Least Absolute Shrinkage and Selection Operator (Lasso), Random forest, SVM-RFE, and XGboost. The model for identifying CRLM was developed using stepwise logistic regression and was validated using internal and independent datasets. The prognostic value of hub CRLM-specific genes was assessed using the Lasso-Cox method. The in vitro experiments were performed using SW620 cells. The CRLM identification model was developed based on four CRLM-specific genes (SPP1, ZG16, P2RY14, and PRKAR2B), and the model efficacy was validated using GSE41258 and three external cohorts. Five CRLM-specific prognostic hub genes, SPP1, ZG16, P2RY14, CYP2E1, and C5, were identified using the Lasso-Cox algorithm, and a risk score was constructed. The risk score was validated using the GSE39582 cohort. Three genes have both efficacy in identifying CRLM and prognostic value: ZG16, P2RY14, and SPP1. Immune infiltration and enrichment analyses demonstrated that SPP1 was associated with M2 macrophage polarization and extracellular matrix remodeling. In vitro experiments indicated that SPP1 may act as a cancer-promoting factor. The hub CRLM-specific gene SPP1 can help determine the diagnosis, prognosis, and immune infiltration of patients with CRLM.


Assuntos
Neoplasias Colorretais , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Aprendizado de Máquina , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/secundário , Prognóstico , Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Linhagem Celular Tumoral , Osteopontina/genética
5.
Int J Biol Macromol ; 275(Pt 1): 133568, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38969033

RESUMO

This paper initially examines the feasibility and effectiveness on interfacial adhesion of composites when grafting nanoparticle-structured polydopamine (PDA) and chitosan around carbon fiber periphery. The resulting interfacial shear strength was maximized as 92.3 MPa, delivering 50.1 % and 15.7-16.2 % gains over those of control fiber and only polydopamine nanospheres (PDANPs) or only chitosan modified fiber composites. Measuring surface morphology and thermal stability of fibers found that abundant PDANPs well adhered with the help of chitosan, highlighting nanoscale size effects and intrinsic adhesiveness of PDA. Under good wettability, rich and dense interfacial interactions (covalent and hydrogen bond, electrostatic interaction, and π conjugation) caused by PDANPs/chitosan coating provides impetus for effective stress transfer. Additionally, the stable "soft-rigid" combination of chitosan and PDANPs adds the efficiency of crack passivation. As such, it is hoped that this work could fully explore the possibility of PDA geometry in interphase engineering of fiber composites.


Assuntos
Fibra de Carbono , Quitosana , Indóis , Nanosferas , Polímeros , Quitosana/química , Indóis/química , Nanosferas/química , Polímeros/química , Fibra de Carbono/química , Molhabilidade
6.
Brain Res Bull ; 215: 111030, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38996935

RESUMO

Alzheimer's disease (AD) is a neurodegenerative brain disorder that progressively impairs long-term and working memory. The function and mechanism of PA(Patchouli alcohol) in improving AD in the external treatment of encephalopathy remain unclear. This study aimed to investigate the therapeutic effect of PA on AD using an Aß1-42 induced AD mouse model with LPS(Lipopolysaccharide) stimulation of BV2 microglial cells. Additionally, we aimed to explore the potential mechanism of PA in enhancing autophagy and reducing neuroinflammation through the AMPK (AMP-activated protein kinase)/mTOR (Mammaliam target of rapamycin) signaling pathway. The Morris water maze was used to assess cognitive function, and cortical and hippocampal tissues were collected for further analysis of the corresponding signaling pathways and inflammatory changes through biological experiments. Our research findings demonstrate that PA has a significant positive impact on cognitive and memory impairments in mice that have been induced with Aß1-42-induced AD. Additionally, PA was also found to revert the activation of microglia induced by LPS. These effects may be attributed to the reduction of neuroinflammation and enhancement of the AMPK/mTOR autophagy pathway. Therefore, PA may serve as an effective therapeutic option to prevent or delay the progression of AD-associated memory dysfunction.


Assuntos
Proteínas Quinases Ativadas por AMP , Doença de Alzheimer , Peptídeos beta-Amiloides , Disfunção Cognitiva , Microglia , Fragmentos de Peptídeos , Transdução de Sinais , Serina-Treonina Quinases TOR , Animais , Peptídeos beta-Amiloides/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Fragmentos de Peptídeos/metabolismo , Fragmentos de Peptídeos/toxicidade , Proteínas Quinases Ativadas por AMP/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Animais de Doenças
7.
Front Nutr ; 11: 1428532, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39027660

RESUMO

Objective: This study aims to develop a predictive model for the risk of major adverse events (MAEs) in type A aortic dissection (AAAD) patients with malnutrition after surgery, utilizing machine learning (ML) algorithms. Methods: We retrospectively collected clinical data from AAAD patients with malnutrition who underwent surgical treatment at our center. Through least absolute shrinkage and selection operator (LASSO) regression analysis, we screened for preoperative and intraoperative characteristic variables. Based on the random forest (RF) algorithm, we constructed a ML predictive model, and further evaluated and interpreted this model. Results: Through LASSO regression analysis and univariate analysis, we ultimately selected seven feature variables for modeling. After comparing six different ML models, we confirmed that the RF model demonstrated the best predictive performance in this dataset. Subsequently, we constructed a model using the RF algorithm to predict the risk of postoperative MAEs in AAAD patients with malnutrition. The test set results indicated that this model has excellent predictive efficacy and clinical applicability. Finally, we employed the Shapley additive explanations (SHAP) method to further interpret the predictions of this model. Conclusion: We have successfully constructed a risk prediction model for postoperative MAEs in AAAD patients with malnutrition using the RF algorithm, and we have interpreted the model through the SHAP method. This model aids clinicians in early identification of high-risk patients for MAEs, thereby potentially mitigating adverse clinical outcomes associated with malnutrition.

8.
Funct Integr Genomics ; 24(4): 122, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38980439

RESUMO

Renal cell carcinoma (RCC) is a malignant tumor originating from the epithelial cells of the renal tubules. The clear cell RCC subtype is closely linked to a poor prognosis due to its rapid progression. Circular RNA (circRNA) is a novel class of regulatory RNA molecules that play a role in the development of ccRCC, although their functions have not been fully elucidated. In this study, we identified a significant downregulation of circ-IP6K2 in ccRCC tissues based on data from the GSE100186 dataset. The decreased expression of circ-IP6K2 correlated with the progression of TNM stage and histological grade, and was also associated with decreased overall survival rates in ccRCC patients. Moreover, our findings revealed that circ-IP6K2 expression suppressed proliferation, migration, and invasion capabilities in vitro, and inhibited xenograft growth in vivo. Mechanistically, circ-IP6K2 acted as a sponge for miR-1292-5p in ccRCC cells, which in turn targeted the 3'UTR of CAMK2N1, leading to a decrease in its expression. CAMK2N1 was identified as a tumor suppressor that negatively regulated the ß-catenin/c-Myc oncogenic signaling pathway. Additionally, we confirmed a positive correlation between the expression of circ-IP6K2 and CAMK2N1 in ccRCC. Circ-IP6K2 functions to impede the progression of ccRCC by modulating the miR-1292-5p/CAMK2N1 axis. These findings shed new light on the molecular mechanisms driving ccRCC progression and suggest potential therapeutic targets for the treatment of ccRCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Fosfotransferases (Aceptor do Grupo Fosfato) , RNA Circular , Animais , Feminino , Humanos , Masculino , Camundongos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Neoplasias Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , RNA Circular/metabolismo , Transdução de Sinais , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Fosfotransferases (Aceptor do Grupo Fosfato)/metabolismo
9.
J Gastrointest Oncol ; 15(3): 841-850, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38989436

RESUMO

Background: Preoperative chemotherapy (CT) or chemoradiotherapy (CRT) show survival benefits in patients with locally advanced esophageal squamous cell carcinoma (ESCC); however, ESCC patients still have a dismal prognosis. We conducted two phase-II, single-armed clinical trials to assess the potential benefits, efficacy, feasibility, and safety of esophagectomy after combining preoperative CT or CRT and neoadjuvant programmed cell death protein 1 (PD-1) inhibitors in the treatment of ESCC. Methods: Patients were included with histologically confirmed ESCC (clinical stage II-IVA according to the American Joint Committee on Cancer 8th staging system) from two phase-II, single-arm trials (NCT04506138 and NCT03940001). Patients underwent two doses of intravenous PD-1 inhibitor (either camrelizumab or sintilimab) every 3 weeks, combined with two cycles of either CT or CRT. The primary endpoint of the study was the safety and short-term outcomes of esophagectomy as measured by the risk of developing complications within 30 days, after the combination of preoperative PD-1 inhibitor and CT or CRT Secondary endpoint was to evaluate the pCR rates (pT0N0), primary tumor pCR rates (pT0), operation time, postoperative stay, and 30-day mortality rate between both groups. Results between both groups were compared using a multivariable log-binomial regression model to obtain the adjusted relative risk ratios (RRs). Results: Between May 2019 and June 2022, 55 patients were included. All patients completed neoadjuvant therapy. Age, sex, performance status, clinical stage, histologic subtype, procedure type, operative time, and blood loss volume were similar between the two groups. The primary tumor pCR rates were 52.9% in the nICRT group and 21.6% in the nICT group (P=0.03), while the postoperative pCR rates were 41.2% in the nICRT group and 21.6% in the nICT group (P=0.19). The minimally invasive surgery rates were 89.2% (33/37) in the nICT group and 94.1% (16/17) in the nICRT group. The risk of developing pulmonary, anastomotic, or other complications were similar between the two groups. Conclusions: Esophagectomy was safe after the addition of the PD-1 inhibitor to preoperative CT or CRT in ESCC neoadjuvant therapies. Follow-up and the exploratory endpoints, including biomarkers analyses, are ongoing.

10.
Mater Horiz ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994895

RESUMO

Optical wireless communication (OWC), with its blazing data transfer speed and unparalleled security, is a futuristic technology for wireless connectivity. Despite the significant advancements in OWC, the realization of tunable devices for on-demand and versatile connectivity still needs to be explored. This presents a considerable limitation in utilizing adaptive technologies to improve signal directivity and optimize data transfer. This study proposes a unique platform that utilizes tunable, fluid-responsive multifunctional metasurfaces offering dynamic and unprecedented control over electromagnetic wave manipulation to enhance the performance of OWC networks. We have achieved real-time, on-demand beam steering with vary-focusing capability by integrating the fabricated metasurfaces with different isotropic fluids. Furthermore, the designed metasurfaces are capable of polarization-based switching of the diffracted light beams to enhance overall productivity. Our research has showcased the potential of fluid-responsive tunable metasurfaces in revolutionizing OWC networks by significantly improving transmission reliability and signal quality through real-time adjustments. The proposed methodology is verified by designing and fabricating an all-dielectric metasurface measuring 500 µm × 500 µm and experimentally investigating its fluid-responsive vary-focal capability. By incorporating fluid-responsive properties into spin-decoupled metasurfaces, we aim to develop advanced high-tech optical devices and systems to simplify beam-steering and improve performance, adaptability, and functionality, making the devices suitable for various practical applications.

11.
Int J Biol Macromol ; : 133719, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992544

RESUMO

A new polysaccharide fraction (ATP) was obtained from Armillariella tabescens mycelium. Structural analysis suggested that the backbone of ATP was →4)-α-D-Glcp(1 â†’ 2)-α-D-Galp(1 â†’ 2)-α-D-Glcp(1 â†’ 4)-α-D-Glcp(1→, which branched at O-3 of →2)-α-D-Glcp(1 â†’ and terminated with T-α-D-Glcp or T-α-D-Manp. Besides, ATP significantly alleviated ulcerative colitis (UC) symptoms and inhibited the production of pro-inflammation cytokines (IL-1ß, IL-6). Meanwhile, ATP could improve colon tissue damage by elevating the expression of MUC2 and tight junction proteins (ZO-1, occludin and claudin-1) levels and enhance intestinal barrier function through inhibiting the activation of MMP12/MLCK/p-MLC2 signaling pathway. Further studies exhibited that ATP could increase the relative abundance of beneficial bacteria such as f. Muribaculacese, g. Muribaculaceae, and g. Alistips, and decrease the relative abundance of g. Desulfovibrio, g. Colidextribacter, g. Ruminococcaceae and g.Oscillibacter, and regulate the level of short-chain fatty acids. Importantly, FMT intervention with ATP-derived microbiome certified that gut microbiota was involved in the protective effects of ATP on UC. The results indicated that ATP was potential to be further developed into promising therapeutic agent for UC.

12.
J Thorac Dis ; 16(6): 3740-3752, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38983149

RESUMO

Background: Due to the widespread use of computed tomography (CT) screening and advances in diagnostic techniques, an increasing number of patients with multiple pulmonary nodules are being detected and pathologically diagnosed as synchronous multiple primary lung cancers (sMPLC). It has become a new challenge to treat multiple pulmonary nodules and obtain a favorable prognosis while minimizing the perioperative risk for patients. The purpose of this study was to summarize the preliminary experience with a hybrid surgery combining pulmonary resection and ablation for the treatment of sMPLC and to discuss the feasibility of this novel procedure with a literature review. Methods: This is a retrospective non-randomized controlled study. From January 1, 2022 to July 1, 2023, four patients underwent hybrid surgery combining thoracoscopic pulmonary resection and percutaneous pulmonary ablation for multiple pulmonary nodules. Patients were followed up at 3, 6 and 12 months postoperatively and the last follow-up was on November 30, 2023. Clinical characteristics, perioperative outcomes, pulmonary function recovery and oncologic prognosis were recorded. Meanwhile we did a literature review of studies on hybridized pulmonary surgery for the treatment of multiple pulmonary nodules. Results: All the four patients were female, aged 52 to 70 years, and had no severe cardiopulmonary dysfunction on preoperative examination. Hybrid surgery of simultaneous pulmonary resection and ablation were performed in these patients to treat 2 to 4 pulmonary nodules, assisted by intraoperative real-time guide of C-arm X-ray machine. The operation time was from 155 to 240 minutes, and intraoperative blood loss was from 50 to 200 mL. Postoperative hospital stay was 2 to 7 days, thoracic drainage duration was 2 to 6 days, and pleural drainage volume was 300-1,770 mL. One patient presented with a bronchopleural fistula due to pulmonary ablation; the fistula was identified and sutured during thoracoscopic surgery and the patient recovered well. No postoperative 90-day complications occurred. After 3 months postoperatively, performance status scores for these patients recovered to 80 to 100. No tumor recurrence or metastasis was detected during the follow-up period. Conclusions: Hybrid procedures combining minimally invasive pulmonary resection with ablation are particularly suitable for the simultaneous treatment of sMPLC. Patients had less loss of pulmonary function, fewer perioperative complications, and favorable oncologic prognosis. Hybrid surgery is expected to be a better treatment option for patients with sMPLC.

13.
Plants (Basel) ; 13(13)2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38999704

RESUMO

Chrysanthemums are among the world's most popular cut flowers, with their color being a key ornamental feature. The formation of these colors can be influenced by high temperatures. However, the regulatory mechanisms that control the fading of chrysanthemum flower color under high-temperature stress remain unclear. This study investigates the impact of high temperatures on the color and biochemical responses of purple chrysanthemums. Four purple chrysanthemum varieties were exposed to both normal and elevated temperature conditions. High-temperature stress elicited distinct responses among the purple chrysanthemum varieties. 'Zi Feng Che' and 'Chrystal Regal' maintained color stability, whereas 'Zi Hong Tuo Gui' and 'Zi lian' exhibited significant color fading, particularly during early bloom stages. This fading was associated with decreased enzymatic activities, specifically of chalcone isomerase (CHI), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS), indicating a critical period of color development under heat stress. Additionally, the color fading of 'Zi Lian' was closely related to the increased activity of the peroxidase (POD) and polyphenol oxidase (PPO). Conversely, a reduction in ß-glucosidase (ßG) activity may contribute significantly to the color steadfastness of 'Zi Feng Che'. The genes Cse_sc027584.1_g010.1 (PPO) and Cse_sc031727.1_g010.1 (POD) might contribute to the degradation of anthocyanins in the petals of 'Zi Hong Tuo Gui' and 'Zi Lian' under high-temperature conditions, while simultaneously maintaining the stability of anthocyanins in 'Zi Feng Che' and 'Chrystal Regal' at the early bloom floral stage. The findings of this research provide new insights into the physiological and biochemical mechanisms by which chrysanthemum flower color responds to high-temperature stress.

14.
Future Sci OA ; 10(1): 2340186, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39069888

RESUMO

Aim: This study aimed to explore using peripheral blood mononuclear cell (PBMC)-derived chimeric antigen receptor (CAR) NK cells targeting ROBO1 as a personalized medicine approach for ovarian cancer. Methods: A two-step strategy generated ROBO1-targeted CAR NK cells from PBMCs of ovarian cancer patients. Efficacy was evaluated using xCELLigence RTCA, CCK-8 and Live/Dead fluorescence assays. Results: ROBO1-NK cells exhibited higher efficiency in eradicating primary ovarian cancer cells and lysing ovarian tumor organoids compared with primary NK cells without ROBO1-CAR modification. Conclusion: These findings highlight the potential of developing ROBO1-targeted CAR-NK cells from patients' PBMCs as a personalized treatment option for ovarian cancer.


Ovarian cancer represents a formidable clinical challenge necessitating the urgent exploration of novel therapeutic approaches. In this study, the focus was directed toward ROBO1, a molecule known to play a pivotal role in cancer angiogenesis and metastasis, while limited investigation in the context of ovarian cancer. Leveraging this knowledge, we sought to construct ROBO1-targeting chimeric antigen receptor natural killer (CAR-NK) cells utilizing peripheral blood mononuclear cells derived from the patients themselves. The overarching goal of this investigation was to harness the potential of immunotherapy using autologous resources to realize personalized treatment strategies for ovarian cancer in clinical settings.

15.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38984882

RESUMO

Due to the limited maximum output power of the pulsers based on avalanche transistors, high-power ultrawideband (UWB) radiation systems usually synthesize plenty of modules simultaneously to achieve a high peak effective potential (rEp). However, this would lead to an increased aperture size as well as a narrower beam, which would limit their applications in intentional electromagnetic interference fields. In this paper, a high-power UWB radiation system with beam broadening capacity is developed. To achieve beam broadening in the time domain, a power-law time delay distribution method is proposed and studied by simulation, and then the relative excitation time delays of the modules are optimized to achieve higher rEp and avoid beam splitting in the beam broadening mode. In order to avoid false triggering of the pulser elements when implementing the beam broadening, the mutual coupling effect in the system is analyzed and suppressed by employing onboard high-pass filters, since the mutual coupling effect is much more severe in the low-frequency range. Finally, a radiation system with 36 modules is developed. Measuring results indicate that in the high-rEp mode, the developed system could achieve a maximum effective potential rEp of 313.6 kV and a maximum pulse-repetition-rate of 20 kHz. In the beam broadening mode, its half-peak-power beam width in the H-plane is broadened from the original value of 3.9° to 7.9°, with a maximum rEp of 272.9 kV. The polarization direction of the system could be flexibly adjusted by a built-in motor.

16.
Biomolecules ; 14(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39062594

RESUMO

BACKGROUND: Pemphigus is a group of potentially life-threatening autoimmune bullous diseases induced by pathogenic autoantibodies binding to the surface of epidermal cells. The role of the gut microbiota (GM) has been described in various autoimmune diseases. However, the impact of the GM on pemphigus is less understood. This study aimed to investigate whether there was alterations in the composition and function of the GM in pemphigus patients compared to healthy controls (HCs). METHODS: Fecal samples were collected from 20 patients with active pemphigus (AP), 11 patients with remission pemphigus (PR), and 47 HCs. To sequence the fecal samples, 16S rRNA was applied, and bioinformatic analyses were performed. RESULTS: We found differences in the abundance of certain bacterial taxa among the three groups. At the family level, the abundance of Prevotellaceae and Coriobacteriaceae positively correlated with pathogenic autoantibodies. At the genus level, the abundance of Klebsiella, Akkermansia, Bifidobacterium, Collinsella, Gemmiger, and Prevotella positively correlated with pathogenic autoantibodies. Meanwhile, the abundance of Veillonella and Clostridium_XlVa negatively correlated with pathogenic autoantibodies. A BugBase analysis revealed that the sum of potentially pathogenic bacteria was elevated in the AP group in comparison to the PR group. Additionally, the proportion of Gram-negative bacteria in the PR group was statistically significantly lower in comparison to the HC group. CONCLUSION: The differences in GM composition among the three groups, and the correlation between certain bacterial taxa and pathogenic autoantibodies of pemphigus, support a linkage between the GM and pemphigus.


Assuntos
Autoanticorpos , Disbiose , Fezes , Microbioma Gastrointestinal , Pênfigo , Humanos , Pênfigo/imunologia , Pênfigo/microbiologia , Microbioma Gastrointestinal/imunologia , Autoanticorpos/imunologia , Masculino , Feminino , Disbiose/imunologia , Disbiose/microbiologia , Pessoa de Meia-Idade , Adulto , Fezes/microbiologia , RNA Ribossômico 16S/genética , Idoso , Estudos de Casos e Controles , Bactérias/imunologia , Bactérias/classificação
17.
Sci Rep ; 14(1): 17376, 2024 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075074

RESUMO

This study aimed to establish a predictive model for the risk of post-thoracic endovascular aortic repair (TEVAR) post-implantation syndrome (PIS) in type B aortic dissection (TBAD) patients, assisting clinical physicians in early risk stratification and decision management for high-risk PIS patients. This study retrospectively analyzed the clinical data of 547 consecutive TBAD patients who underwent TEVAR treatment at our hospital. Feature variables were selected through LASSO regression and logistic regression analysis to construct a nomogram predictive model, and the model's performance was evaluated. The optimal cutoff value for the PIS risk nomogram score was calculated through receiver operating characteristic (ROC) curve analysis, further dividing patients into high-risk group (HRG) and low-risk group (LRG), and comparing the short to midterm postoperative outcomes between the two groups. In the end, a total of 158 cases (28.9%) experienced PIS. Through LASSO regression analysis and multivariable logistic regression analysis, variables including age, emergency surgery, operative time, contrast medium volume, and number of main prosthesis stents were selected to construct the nomogram predictive model. The model achieved an area under the curve (AUC) of 0.86 in the training set and 0.82 in the test set. Results from calibration curve, decision curve analysis (DCA) and clinical impact curve (CIC) demonstrated that the predictive model exhibited good performance and clinical utility. Furthermore, after comparing the postoperative outcomes of HRG and LRG patients, we found that the incidence of postoperative PIS significantly increased in HRG patients. The duration of ICU stay and mechanical assistance time was prolonged, and the incidence of postoperative type II entry flow and acute kidney injury (AKI) was higher. The risk of aortic-related adverse events (ARAEs) and major adverse events (MAEs) at the first and twelfth months of follow-up also significantly increased. However, there was no significant difference in the mortality rate during hospitalization. This study established a nomogram model for predicting the risk of PIS in patients with TBAD undergoing TEVAR. It serves as a practical tool to assist clinicians in early risk stratification and decision-making management for patients.


Assuntos
Aorta Torácica , Dissecção Aórtica , Correção Endovascular de Aneurisma , Complicações Pós-Operatórias , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Aorta Torácica/cirurgia , Aneurisma da Aorta Torácica/cirurgia , Dissecção Aórtica/cirurgia , Implante de Prótese Vascular/efeitos adversos , Correção Endovascular de Aneurisma/efeitos adversos , Nomogramas , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Prognóstico , Estudos Retrospectivos , Medição de Risco/métodos , Fatores de Risco , Curva ROC , Síndrome
18.
Int J Surg ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38954672

RESUMO

BACKGROUND: Acute kidney injury (AKI) is a common and serious complication after cardiac surgery that significantly affects patient outcomes. Given the limited treatment options available, identifying modifiable risk factors is critical. Frailty and obesity, two heterogeneous physiological states, have significant implications for identifying and preventing AKI. Our study investigated the interplay among frailty, body composition, and AKI risk after cardiac surgery to inform patient management strategies. MATERIAL AND METHODS: This retrospective cohort study included three international cohorts. Primary analysis was conducted in adult patients who underwent cardiac surgery between 2014 and 2019 at Wuhan XX Hospital, China. We tested the generalizability of our findings with data from two independent international cohorts, the Medical Information Mart for Intensive Care IV (MIMIC-IV) and the eICU Collaborative Research Database. Frailty was assessed using a clinical lab-based frailty index (FI-LAB), while total body fat percentage (BF%) was calculated based on a formula accounting for BMI, sex, and age. Logistic regression models were used to analyze the associations between frailty, body fat, and AKI, adjusting for pertinent covariates. RESULTS: A total of 8785 patients across three international cohorts were included in the study. In the primary analysis of 3,569 patients from Wuhan XX Hospital, moderate and severe frailty were associated with an increased AKI risk after cardiac surgery. Moreover, a nonlinear relationship was observed between body fat percentage and AKI risk. When stratified by the degree of frailty, lower body fat correlated with a decreased incidence of AKI. Extended analyses using the MIMIC-IV and eICU cohorts (n=3,951 and n=1,265, respectively) validated these findings and demonstrated that a lower total BF% was associated with decreased AKI incidence. Moderation analysis revealed that the effect of frailty on AKI risk was moderated by the body fat percentage. Sensitivity analyses demonstrated results consistent with the main analyses. CONCLUSION: Higher degrees of frailty were associated with an elevated risk of AKI following cardiac surgery, and total BF% moderated this relationship. This research underscores the significance of integrating frailty and body fat assessments into routine cardiovascular care to identify high-risk patients for AKI and implement personalized interventions to improve patient outcomes.

19.
Aquat Toxicol ; 273: 107003, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901219

RESUMO

The presence of microplastics in the aquatic environment has attracted widespread attention. A large number of studies have assessed the effects of microplastics on the respiratory system of aquatic animals, but the results are not directly comparable across studies due to inconsistent evaluation criteria. Therefore, we adopted an integrated research approach that can integrate and parse complex data to improve reliability, conducted a systematic review and meta-analysis of 35 published studies, and elucidated the mechanisms of microplastic damage to cells. The results showed that PE had the greatest impact on aquatic animals, and fish were the most sensitive to the effects caused by microplastics, with oxidative stress induced by exposure concentrations exceeding 1000 µg/L or exposure times exceeding 28 days, leading to depletion of antioxidant defenses, cellular damage, inflammatory responses, and behavioral abnormalities. As this review is based on existing studies, there may be limitations in terms of literature quality, data availability and timeliness. In conclusion, we suggest to combat microplastic pollution by limiting plastic use, promoting plastic substitution and recycling, and enhancing microplastic capture degradation technologies.


Assuntos
Organismos Aquáticos , Microplásticos , Sistema Respiratório , Poluentes Químicos da Água , Animais , Organismos Aquáticos/efeitos dos fármacos , Microplásticos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Sistema Respiratório/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
20.
Eur J Med Chem ; 275: 116570, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-38878517

RESUMO

Broussonetine S (9), its C-1' and C-10' stereoisomers, and their corresponding enantiomers have been synthesized from enantiomeric arabinose-derived cyclic nitrones, with cross metathesis (CM), epoxidation and Keck asymmetric allylation as key steps. Glycosidase inhibition assays showed that broussonetine S (9) and its C-10' epimer (10'-epi-9) were nanomolar inhibitors of bovine liver ß-galactosidase and ß-glucosidase; while their C-1' stereoisomers were 10-fold less potent towards these enzymes. The glycosidase inhibition results and molecular docking calculations revealed the importance of the configurations of pyrrolidine core and C-1' hydroxyl for inhibition potency and spectra. Together with the docking calculations we previously reported for α-1-C-alkyl-DAB derivatives, we designed and synthesized a series of 6-C-alkyl-DMDP derivatives with very simple alkyl chains. The inhibition potency of these derivatives was enhanced by increasing the length of the side chain, and maintained at nanomolar scale inhibitions of bovine liver ß-glucosidase and ß-galactosidase after the alkyl groups are longer than eight or ten carbons for the (6R)-C-alkyl-DMDP derivatives and their 6S epimers, respectively. Molecular docking calculations indicated that each series of 6-C-alkyl-DMDP derivatives resides in the same active site of ß-glucosidase or ß-galactosidase with basically similar binding conformations, and their C-6 long alkyl chains extend outwards along the hydrophobic groove with similar orientations. The increasing inhibitions of ß-glucosidase and ß-galactosidase with the number of carbon atoms in the side chains may be explained by improved adaptability of longer alkyl chains in the hydrophobic grooves. In addition, the lower ß-glucosidase and ß-galactosidase inhibitions of (6S)-C-alkyl-DMDP derivatives than their C-6 R stereoisomers can be attributed to the misfolding of their alkyl chains and resulted decreased adaptability in the hydrophobic groove. The work reported herein is valuable for design and development of more potent and selective inhibitors of ß-galactosidase and ß-glucosidase, which have potential in treatment of lysosomal storage diseases. Furthermore, part of the 6-C-alkyl-DMDP derivatives and their enantiomers were also tested as potential anti-cancer agents; all the compounds tested were found with moderate cytotoxic effects on MKN45 cells, which would indicate potential applications of these iminosugars in development of novel anticancer agents.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Simulação de Acoplamento Molecular , beta-Galactosidase , beta-Glucosidase , beta-Galactosidase/antagonistas & inibidores , beta-Galactosidase/metabolismo , Bovinos , Animais , Relação Estrutura-Atividade , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , beta-Glucosidase/antagonistas & inibidores , beta-Glucosidase/metabolismo , Estrutura Molecular , Relação Dose-Resposta a Droga , Inibidores de Glicosídeo Hidrolases/farmacologia , Inibidores de Glicosídeo Hidrolases/síntese química , Inibidores de Glicosídeo Hidrolases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA